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Disclaimer: The sole purpose of this research statement is to apply for jobs; I make no serious
attempt to give a comprehensive historical review or assign appropriate credit to those who deserve
the credit.

1 Who am I?

This section speaks in high-level generalities that can be skipped by readers who are more interested
in technical details.

I consider myself to be an applied mathematician first and foremost and aim to remain so,
despite the changing times. Given the breadth of my studies, this appellation might surprise some.
The following two paragraphs explain my modus operandi in research and why applied mathematics
is my home base and primary venue for publication.

Researchers typically solve particular problems or build general theories. I do both in every
area in which I work. I start by solving specific, concrete problems, most often those that others
need solved. And then, the solution to the particular problem typically turns out to generalize to
abstract theories applicable well beyond the context of the original motivating applications.

The reason that the solutions to concrete particular problems generalize to become widely ap-
plicable abstract theories is obvious. My solutions always contribute new substantive mathematical
content. Since mathematics at some level is purely formal, these mathematical contributions turn
out to apply much more widely than I could have imagined. Thus, mathematics is core to my
research and a constant source of pleasant surprise.

The following are four highlights from my career thus far:

2 Detecting differences while conditioning on or controlling for
covariates

This section summarizes my foremost contribution to R&D in the most elementary terms possible.
Consider the following simplest special case of the general theory we eventually developed:
We would like a single scalar number to summarize the differences between n pairs of numbers

(R1, s1), (R2, s2), . . . , (Rn, sn), where Rk is either 0 or 1 and sk can take any real value from 0 to
1 (inclusive), for k = 1, 2, . . . , n. Perfect calibration is when the expected value of Rk is equal to
sk, for k = 1, 2, . . . , n. For instance, weather predictions are perfectly calibrated when it actually
rains on x% of the days predicted to have an x% chance of rain, for all possible values of x.

The Kuiper metric is the absolute value of the sum of (Rk − sk)/n, summing over only those k
for which sk falls in an interval. The interval is chosen such that the absolute value of the sum is
greatest.

The reason for restricting to this worst-case interval is to minimize possible cancellation be-
tween positive and negative differences. The Kuiper statistic can take values ranging from 0 to 1
(inclusive).
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The Kuiper metric is easy to calculate via cumulative statistics (due to the discrete version of
the Fundamental Theorem of Calculus, giving the relation between finite differences and partial
sums). I introduced this Kuiper statistic in [15], modifying and generalizing the classic statistics
of Kuiper which test goodness-of-fit of distributional form.

The existing standard metrics, especially what is usually called the “ECE” or “ICI” (with the
acronyms abbreviating several different phrases), have very poor properties. Indeed, the ECE and
ICI are semi-parametric and require choosing bins for the bins in a histogram. Very often, the
choice of bins can yield whatever result the chooser desires, allowing the choice to fudge the results.

We proved in [1] that the ECE (ICI) is asymptotically inconsistent or infinitely less statistically
powerful than the Kuiper metric (in the limit of infinite sample size) and also demonstrated that
the asymptotic limit is highly relevant to even the smallest sample sizes. Asymptotic inconsistency
means that the ECE converges to the wrong answer even as the number of observations becomes
arbitrarily large, if the resolution of the binning becomes commensurately fine. The ECE is unable
to average away randomness in the observations even when there are infinitely many observations
(at least if the resolution of the binning is sensible, not sacrificing infinitely much statistical power).

Thus, I replaced the standard metrics of calibration, which have such outrageously unacceptable
statistical properties. Moreover, I replaced the standard graphical methods — so-called “reliability
diagrams” or “calibration plots” — with appropriate equally simple yet vastly more reliable cumu-
lative graphs. Reliability diagrams have been universally known to be unacceptably unreliable for
decades.

And this construction for assessing calibration turns out to generalize to the analysis of dif-
ferences between any two random variables being conditioned on a third (with the third known
as a “covariate” or vector of covariates). Statisticians refer to the field of study of differences
between two random variables as a function of a third as “analysis of heterogeneous treatment
effects.” Thus, I introduced a fully non-parametric complement to parametric regression quite gen-
erally. Earlier “non-parametric” methodologies were always actually semi-parametric and allowed
analysts to fudge results (whether purposefully or unintentionally).

The abstraction permitted generalization to comparing a subpopulation to the full population,
to comparing two disjoint subpopulations, to comparing two matched or paired subpopulations,
to arbitrary real-valued responses, to calibration of non-binary ratings, to conditioning on (or
controlling for) multiple covariates, to weighted samples, to the simultaneous calibration of multiple
subpopulations, and beyond. Details are in [1], [3], [5], [14], [15], [16], [17], [18]. Many collaborators
have been involved. A recent overview presented at the International Conference on Machine
Learning to an audience of hundreds is available at https://zenodo.org/records/15253140 in
the form of a slide deck as well as a video recording.

The methods likely should become standard for analyzing randomized controlled trials and
observational studies, at least when controlling for appropriate covariates. My current employer,
Meta, conducts randomized controlled trials in the form of A/B tests and conducts observational
studies in the form of case-control studies; the methods we developed aid in their analysis, com-
plementing parametric regressions. Parametric modeling has the major disadvantage of requiring
a statistical model (perhaps fit via machine learning) that may or may not be correct and that
depends strongly on the choices of the analyst.

Moving forward, I really ought to collect together everything into a comprehensive monograph.
And I should prepare a general-purpose, industrial-strength, comprehensive software package, unify-
ing all the open-source software that accompanies the papers referenced in the previous paragraphs.
Such activities may have to wait for a return to academia, which seems more likely to support such
activities. In the meantime, Meta has deployed the methodologies throughout the company.
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3 FastMRI

This section summarizes a couple-year sojourn into artificial intelligence for medical imaging.
We made some key contributions to clinically accepted acceleration of MRI, building on earlier

techniques in deep learning from NYU and the optical illusion that adding noise can sharpen an im-
age — see, for example, “Why does grain increase acutance?” at https://photo.stackexchange.
com/questions/110750/why-does-grain-increase-acutance. Errors from our acceleration and
diagnostically sound dithering are smaller than the machine errors already present in MRI. Siemens,
Philips, GE, and AIRS currently market FDA-approved products based partly on our work, as sum-
marized in our blog post at https://ai.facebook.com/blog/fastmri-breakthrough-shows-

ai-accelerated-mris-interchangeable-with-slow-traditional-mris and in the short CBS
News clip at https://www.youtube.com/watch?v=9ncABdfkzuU on YouTube.

Let me emphasize the “we” in this fastMRI. My contributions were necessary to the success,
but far from sufficient, and at least a couple others made significantly greater contributions than I.
This was a manifestly team project and I was in no way the most important member of the team.

4 Randomized algorithms for linear algebra

This section summarizes contributions to numerical linear algebra based on randomized methods.
Randomization recently revolutionized numerical methods for linear algebra. We have been con-

tributing to many aspects of this movement, especially with regard to improvements important in
practice. Thus far, randomized methods for dimensionality reduction via low-rank approximation
have had the most practical impact among those to which we contributed. My main contribution
was to prove rigorous guarantees that randomization yields nearly optimal accuracy computa-
tionally efficiently uniformly for all matrices, completely irrespective of the distributions of their
singular values. These rigorous bounds attain for parameter settings that would be absurd in the
classical analyses; for instance, a classical analysis might indicate that good accuracy attains only
after thousands of iterations, whereas the randomized approach requires only a couple iterations.
Needless to say, no one in their right mind would (or did) use such parameters settings prior to the
proofs that they make sense and would always work correctly.

The basic idea underlying the randomized algorithms for low-rank approximation is that the
dimension of the range of a low-rank matrix is low and so is efficient to calculate by applying the
matrix to a few random vectors. Once a basis for the range of a good low-rank approximation of the
matrix is known, classical algorithms from numerical linear algebra can straightforwardly and effi-
ciently construct the low-rank approximation. Vladimir Rokhlin and Tamás Sarlós independently
brought this pair of observations of theirs to prominence. Working up an effective implementation
and proving mathematically rigorous guarantees of nearly optimal accuracy was then easy given
my background, at least for any matrix in which the sum of the squares of nearly all singular values
is negligible.

Unfortunately, the basic algorithm fails miserably when the matrix being approximated is noisy;
“noisy” means that the sum of the squares of the tail of singular values is larger than the desired
accuracy of the low-rank approximation. Noise from the tail of singular values pollutes the range
computed by applying the matrix to random vectors. Fortunately, suppressing the tail of singular
values relative to the singular values which dominate the range is possible by applying the matrix
being approximated to each random vector a few times in succession, requiring no more than a
few matrix-vector multiplications each. I observed this empirically first but was soon able to prove
rigorous guarantees:
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My best-regarded contribution to randomized algorithms was a cumbersome proof that the error
of the approximation decays at least exponentially with the number of matrix-vector multiplications,
with the coefficient in the exponential decay being a universal constant, uniform over all matrices.
In one of the greatest works in numerical analysis — see [4] — Joel Tropp greatly simplified and
tightened the proof, leveraging Israel Gelfand’s spectral-radius formula. Due to ignorance, I had
effectively replicated in [10] a proof of the spectral-radius formula. Curiously enough, the Musco
brothers in [7] and many others later tightened the guarantees beyond Joel Tropp’s, abandoning
the latter’s supremely elegant method for my cumbersome approach (much to my consternation).
At any rate, these methods have become the standard for large-scale principal component analysis,
including the default in the popular Python library, SciKit-Learn.

5 Efficient algorithms for special-function transforms

This section summarizes analogues of the fast Fourier transform for changes of basis involving basis
functions other than the simple sinusoids of the usual Fourier transforms.

The usual Fourier transforms (including expansions into Fourier series) are linear combina-
tions of sinusoids, with the coefficients in the linear combinations specifying the functions being
transformed. However, there are many other similar spectral transforms that use other special
functions instead. The second-most popular (after the original Fourier transforms) are probably
spherical-harmonic transforms. Spherical-harmonic transforms take linear combinations of spherical
harmonics or, after separating variables, associated Legendre functions. Other popular transforms
take linear combinations of Bessel functions.

In all cases, there were large literatures proposing fast algorithms for the associated spectral
transforms prior to any involvement from me. However, none of the proposed algorithms had
demonstrated numerical stability, with most producing infinities and NaNs at even small sizes of
transforms in implementations for standard finite-precision floating-point arithmetic. Arbitrary-
precision arithmetic could stabilize the proposed algorithms, but at the cost of the fast, scalable
algorithms becoming slow.

Effective, provably numerically stable analogues of the fast Fourier transform emerged in [11],
[12], and [13]. There are two classes of methods. The careful organization of computations for
especially large scales in [13] leveraged the Michielssen-Rokhlin generalization of the fast Fourier
transform’s butterfly, introduced by [6] and [8]. The other class leverages the Greengard-Rokhlin
fast-multipole-method and its modern variants based on matrix compression, such as that of [9].
This latter class combines the fast orthonormal-basis-change of [2] with the classical fact that
the values of special functions which satisfy three-term recurrence relations are the entries in the
eigenvectors of certain tridiagonal matrices. (There is also a related, albeit much more complicated,
less efficient generalization based on semi-separable matrices in [11]. The blame for starting with
the senseless complication of semi-separable matrices lies with me. In my defense, though, I did
discover the later simplification that now dominates.) The two classes have various pros and cons
relative to each other; the common thread appears to be Vladimir Rokhlin’s involvement.
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