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We discuss several tests for whether a given set of indepen-

dent and identically distributed (i.i.d.) draws does not co me from
a specified probability density function. The most commonly

used are Kolmogorov-Smirnov tests, particularly Kuiper's variant,
which focus on discrepancies between the cumulative distri bution
function for the specified probability density and the empir ical cu-
mulative distribution function for the given set of i.i.d. d raws. Un-
fortunately, variations in the probability density functi on often get
smoothed over in the cumulative distribution function, mak ing it
difficult to detect discrepancies in regions where the proba bility
density is small in comparison with its values in surroundin gre-

gions. We discuss tests without this deficiency, complement
the classical methods. The tests of the present paper are bas
on the plain fact that it is unlikely to draw a random number wh
probability is small, provided that the draw is taken from th e same
distribution used in calculating the probability (thus, if we draw a
random number whose probability is small, then we can be confi
dent that we did not draw the number from the same distributio
used in calculating the probability).

ing
ed
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n

Kolmogorov-Smirnov | nonparametric | goodness-of-fit | outlier | distri-
bution function | nonincreasing rearrangement

basic task in statistics is to ascertain whether a given et

independent and identically distributed (i.i.d.) draws, Xo,
..., Xn-1, X, does not come from a distribution with a specified
probability density functiorp (the null hypothesis is thak;, Xo,
..., Xn-1, X, doin fact come from the specifigg. In the present
paper, we consider the case wh&n, X5, ..., X,_1, X,, are real
valued. In this case, the most commonly used approach isalue
Kolmogorov and Smirnov (with a popular modification by Kuipe
see, for example, Sections 14.3.3 and 14.3.4 of [1], [2], §8]Test
Statisticsbelow.

The Kolmogorov-Smirnov approach considers the size of th
discrepancy between the cumulative distribution funcfamp and
the empirical cumulative distribution function defined By, X5,
.oy Xn—1, X, (see, for examplelNotation and Test Statistiche-
low for definitions of cumulative distribution functionséempirical
cumulative distribution functions). If the i.i.d. draws;, Xo, ...,
Xn-1, X, used to form the empirical cumulative distribution func-
tion are taken from the probability density functipnused in the
Kolmogorov-Smirnov test, then the discrepancy is small.usThf
the discrepancy is large, then we can be confidentXhatXs, ...,
Xn-1, X, do not come from a distribution with probability density
functionp.

function; focusing on the cumulative distribution functicather than
p itself makes it harder to detect discrepancies in regionsra/h
is small in comparison with its values in surrounding regioffror
example, consider the probability density functjpdepicted in Fig-
ure 1 below (a “tent” with a narrow triangle removed at its>jpnd
the probability density function depicted in Figure 2 below (nearly
the same “tent,” but with the narrow triangle intact, not oxed).
The cumulative distribution functions fgr and ¢ are very similar,
so tests of the classical Kolmogorov-Smirnov type haveli®sig-
naling that i.i.d. draws taken from are actually not taken from.
Section 14.3.4 of [1] highlights this problem and a stratémyits
solution, hence mativating us to write the present article.

We propose to supplement tests of the classical Kolmogorov-
Smirnov type with tests for whether any of the valpéX ), p(X2),

o p(Xn—1), p(X») is small. If any of these values is small, then
we can be confident that the i.i.d. draws, X, ..., X, _1, X, did
not arise from the probability density functign Theorem 3 below
formalizes the notion of any ¢f(X1), p(X2), ...,p(Xn-1), p(Xn)
being small. We also propose another complementary testhwh
amounts to using the Kolmogorov-Smirnov approach aftearfang-
ing” the probability density functiop so that it is nondecreasing

n the shortest interval outside which it vanishes (see Rethand

g.4 below).

For descriptions of other generalizations of and alteveatito
the Kolmogorov-Smirnov approach (concerning issuesrdisfrom
those treated in the present paper), see, for example pBedt#.3.3
and 14.3.4 of [1], [2], [4], [5], [6]. [7], [8]. [9]. [10], [13, [12], [13],
@nd their compilations of references. For a more generaioagp,
based on customizing statistical tests for problem-spefifnilies of
alternative hypotheses, see [14]. Below, we compare thestats-
tics of the present article with one of the most commonly usstl

étatistics of the Kolmogorov-Smirnov type, namely Kuiggsee, for

example, [2], [3], orTest Statistichbelow). We recommend using
the test statistics of the present paper in conjunction thighKuiper
statistic, to be conservative, as all these statistics temmgnt each
other, helping compensate for their inevitable deficiencie

There are at least two canonical applications. First, tlséste
of the present article can be suitable for checking for nmaifions
with and bugs in computer codes that are supposed to gempseie
dorandom i.i.d. draws from specified probability densityndtions
(especially the complicated ones encountered frequemplyactice).
Good software engineering requires such independentftedtelp-

However, the size of the discrepancy between the cumulative

distribution function forp and the empirical cumulative distribution
function constructed from the i.i.d. draw$;, X2, ..., Xn—1, X
does not always signal that;, X», ..., X,—1, X, do not arise from
a distribution with the specified probability density fuoctp, even
when X1, Xs, ..., X-1, X, do not in fact arise fronp. In some

Reserved for Publication Footnotes

casesn has to be absurdly large for the discrepancy to be significant

It is easy to see why:

The cumulative distribution function is an indefinite intalgof
the probability density functiom. Therefore, the cumulative dis-
tribution function is a smoothed version of the probabilitynsity
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ing validate that computer codes produce correct resuftsaiarse,
such validations do not obviate careful, structured pnognéng, but
are instead complementary). Second, many theories froraighy
and physical chemistry predict (oftenpriori) the probability den-
sity functions from which experiments are supposed to hiegak.d.
draws. The tests of the present paper can be suitable fogralit
erroneous theories of this type, on the basis of experirhelata.
Moreover, there are undoubtedly many other potential appdins,
in addition to these two.

Kolmogorov-Smirnov test (or Kuiper’s often preferableiagion). If
X is arandom variable distributed accordingtdhen another test is
to use the Kolmogorov-Smirnov or Kuiper test for the randaami-v
ablep(X), whose cumulative distribution function®in Eq.2. The
test statistic for the original Kuiper test is

U= <\/ﬁ sup  P(z)— I:’(:c)) - <\/ﬁ inf

—oco<z<oo —oo<z<0oo

P) - P(w)) ,
(3]

For definitions of the notation used throughout this article where P(x) is the empirical cumulative distribution function — the
seeNotationbelow. Test Statisticintroduces several statistical tests. number ofk such thatX;, < z, divided byn. The test statistic for

Numerical Exampletlustrates the power of the statistical tesBain-

clusions and Generalizatiordraws some conclusions and proposes

directions for further work.

Remark 1. All tests used in the present paper do not require any

intervention by the user of suitable software implemeateti The
tests are not a panacea; all such tests have the drawbackastisd
in [14]. See [14] for a much more flexible alternative, allagithe
user to amend tests to be more powerful against user-spkpiiea-
metric families of alternative hypotheses.

Notation

In this section, we set notation used throughout the pressguer.
We useP to take the probability of an event.
p is a probability density function to mean thatis a (Lebesgue-
measurable) function frorR to [0, c0) such that the integral gf
overR is 1.
The cumulative distribution functiof® for a probability density

functionp is
P(z) = / p(y)dy
y<z

(1]

for any real numbes. If X is a random variable distributed accord-

ing to p, then P(z) is just the probability thal < z. Therefore, if
X is a random variable distributed accordingptahen the cumula-
tive distribution functioriP for p(X) is

P(x) =/ p(y) dy,
p(y)<=
the probability thap(X) <

(2]

the Kuiper test fop(X

- <\/ﬁ sup Plz)

0<z<oco

) is therefore

75(23)) - <\/ﬁ inf P(x)—

0<z<oco ,P(:C)) ’
R [4]
whereP(z) is the number ok such thap(X}) < z, divided byn.
Remark 2 above and Remark 5 below provide some motivation for
usingV’, beyond its being a natural variation 6h

The rationale for using statistics suchl@asandV is the follow-
ing theorem, corollary, and the ensuing discussion (seexample,
Sections 14.3.3 and 14.3.4 of [1], [3], or [2] for proofs aredails).

Theorem 1. Suppose thap is a probability density functionX is
a random variable distributed according {9 and P is the cumula-

We say thattive distribution function forX from Eq.1. Then, the distribution of

P(X) is the uniform distribution ovejo, 1].
Corollary 2. Suppose that is a probability density function¥ is a
random variable distributed according 9 andP is the cumulative
distribution function forp(X) from Eq.2. Then, the cumulative dis-
tribution function of P(p(X)) is less than or equal to the cumulative
distribution function of the uniform distribution ové®, 1]. More-
over, the distribution ofP(p(X)) is the uniform distribution over
[0, 1] if P is a continuous functiori® is a continuous function when,
for every nonnegative real numbgy the probability thatp(X) = y
is 0).

Theorem 1 generalizes to the fact that, if the i.i.d. dréys X»,

., Xn—1, X, arise from the probability density functigninvolved
in the definition ofU in Eq. 3, then the distribution of/ does not de-
pend orp; the distribution ot is the same for any. With high prob-
ability, U is not much greater than 1 when the i.i.d. dra¥is, X2,

Xn-1, X, used in the definition ot/ in Eq. 3 are taken from

For reference, we summarize our (reasonably standard) notghe distribution whose probability density functiprand cumulative

tional conventions in Table 1.

distribution functionP are used in the definition df. Therefore, if

Remark 2. The “nonincreasing rearrangement” (or nondecreasing the statistic that we compute turns out to be substantially greater

rearrangement) of a probability density function (see, éaample,
Section V.3 of [15]) clarifies the meaning of the distribatfoinction
‘P defined in Eq2. With P defined in Eql and P defined in Eq2,
P(p(xz)) = P(z) for any real numbetr in the shortest interval out-
side which the probability density functigrvanishes, as long gsis
increasing on that shortest interval.

Test Statistics

In this section, we introduce several statistical tests.
One test of whether i.i.d. dran¥;, X5, ..., X,_1, X, do
not arise from a specified probability density functipnis the

Table 1. Notational conventions

mathematical object typeface example
probability density function italic lowercase  p(z)
cumulative distribution func. in Eq. 1 italic uppercase P(x)
distribution function defined in Eq. 2 script uppercase P(m)
taking the probability of an event bold uppercase P{X < :c}
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than 1, then we can have high confidence that the i.i.d. dPéwysXs,

., Xn-1, X, were not taken from the distribution whose probabil-
ity density functionp and cumulative distribution functio®® were
used in the definition of/. Similarly, if V' defined in Eq4 turns out
to be substantially greater than 1, then we can have highdente
that the i.i.d. drawsX;, Xo, ..., X,_1, X, were not taken from
the distribution whose probability density functiprand distribution
function P were used in the definition df. For details, see, for
example, Sections 14.3.3 and 14.3.4 of [1], [3], or [2].

A third test statistic is
W =n min P(p(Xk)).

1<k<n

(5]

The following theorem (which follows immediately from Cdro
lary 2) and ensuing discussion charactefieand its applications.
Theorem 3. Suppose thap is a probability density functiorn is a
positive integerX1, X2, ..., Xn—1, X, are i.i.d. random variables
each distributed according @ P is the cumulative distribution func-
tion for p(X1) from Eq.2, and W is the random variable defined in
Eq.5. Then,

P{Wg;c}§1—(1—%)" [6]

foranyz € [0, n].
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For any positive real number < 1/2, we define
To=n—n(l—a)/" [7]
if W < zq, then due to Eg6 we can have at lea$t00(1 — «)]%
confidence that the i.i.d. draws;, Xo, ..., X,._1, X, do not arise
from p. It follows from Eq.7 that

a<zo<—In(l—a)=a+a’/2+a’/3+... <a+a? [8]

with z, = a forn = 1, andlim, o o« = —In(1 — ). There-
fore, if W < «, then we have at leaft00(1 — a)]% confidence that
the i.i.d. drawsX;, X, ..., X,_1, X, do not arise fromp. Taking

U andV; U andV should be substantially greater than 1 when the
i.i.d. draws X1, Xo, ..., Xn_1, X, are taken from a different dis-
tribution, to signal the difference between the commonrithistion
of each ofX;, X, ..., X,,—1, X,, and the distribution whose prob-
ability density functionp, cumulative distribution functior?, and
distribution functionP are used in the definitions &f andV'.

For details concerning the interpretation of and signifiealev-
els for the Kuiper test statistids and V' defined in Eqs3 and 4,
see Sections 14.3.3 and 14.3.4 of [1], [2], or [3]; both orred favo-
tailed hypothesis tests are available, for any finite numbefrdraws
X1, X2, ..., Xn-1, Xn, and also in the limit of large. In short, if
Xy, Xo, ..., Xn—1, X,, are i.i.d. random variables drawn according

a = .01, for example, we have at least 99% confidence that the i.i.do a continuous cumulative distribution functiéh then the comple-

draws X1, Xo, ..., Xn—1, X, do not arise fronp, if W < .01.
Remark 3. If W defined in Eg5 is at mostl, then we can have at
least[100(1 — W)]% confidence that the i.i.d. drawX,, Xo, ...,
Xn-1, X, do not arise from the probability density functiprused
in Eq.5.

Remark 4. Using W defined in Eq5 along with the upper bound in
Eq.6 is optimal when the probability density functiptiakes on only
finitely many values, or whemhas the property that, for every non-
negative real numbey, the probability is O thap(X) = y, whereX
is a random variable distributed according fo In both cases, the
inequality in Eq.6 becomes the equality

P{W <nP(p())} =1~ (1-Pl())"

foranyz € R.

Remark 5. When the statistid¥ defined in Egq5 is not powerful
enough to discriminate between two particular distribngpthen a
natural alternative is the average

(9]

- 1 <&

W == PEXy) [10]
k=1

The Kuiper test statisti®” defined in Eg4 is a more refined version

of this alternative, and we recommend uslfignstead ofi¥’, in con-
junction with the use oV and U defined in Eq3. We could also
consider more general averages of the form

f <% ig(mmxk»)) ,

k=1
where f and g are functions; obvious candidates inclugiéx)
exp(z) and g(x) = In(z), and f(z) 1 — 27 and g(x)
(1 —2)7, withqg € (1, c0).

[11]

Numerical Examples

In this section, we illustrate the effectiveness of the statistics of
the present paper via several numerical experiments. Fir ea
periment, we compute the statistits V', andW defined in Eqs3,

4, and5 for two sets of i.i.d. draws, first for i.i.d. draw&;, Xo,
...y, Xn—1, X, taken from the distribution whose probability den-
sity functionp, cumulative distribution functiod®, and distribution
function P are used in the definitions &f, V', andW in Eqgs.3, 4,
and5, and second for i.i.d. dranX,, X», ..., X,_1, X, taken from

a different distribution.

The test statisticE/ andV defined in Eqs3 and4 are the same,
except that/ concerns a random variah¥ drawn from a probability
density functiorp, while vV concerng (X ). We can directly compare
the values ot/ andV for various distributions in order to gauge their
relative discriminative powers. Ideally; andV" should not be much
greater than 1 when the i.i.d. draig, X2, ..., X,,—1, X,, used in
the definitions ofU andV in Egs.3 and4 are taken from the distri-
bution whose probability density functign cumulative distribution
function P, and distribution functiorP are used in the definitions of

Footline Author

mentary cumulative distribution function &f defined in Eq.3 for
the same cumulative distribution functidd has an upper tail that
decays nearly as fast as the complementary error functitthodgh
the details are complicated (varying withand with the form — one-
tailed or two-tailed — of the hypothesis test), the proligbthat U
is greater than 2 is at most 1% whé&hn, Xo, ..., X,_1, X,, usedin
Eq. 3 are drawn according to the same cumulative distributiolfun
tion P as used in EcB.

As described in Remark 3, the interpretation of the testssiat
W defined in Eq5is simple: IfWW defined in Eg5is at most 1, then
we can have at lea§t00(1 — W)]% confidence that the i.i.d. draws
X1, Xo, ..., Xn—1, X, do not arise from the probability density
functionp used in Eq5.

Tables 2-5 display numerical results for the examples destr
in the subsections below. The following list describes thadings
of the tables:

® n is the number of i.i.d. drawX;, X5, ..., X,,_1, X,, taken to
form the statisticé/, V', andWW defined in Egs3, 4, and5.

Uy is the statisticU defined in Eq.3, with the X7, Xo, ...,
Xn_1, X, defining P in Eq.3 drawn from a distribution with the
same cumulative distribution functidf as used in Eq3. Ideally,
Up should be small, not much larger than 1.

U, is the statisticU defined in Eq.3, with the X7, Xa, ...,
Xn_1, X defining P in Eq. 3 drawn from a distribution with
a cumulative distribution function that is different frafused in
Eq. 3. Ideally, U; should be large, substantially greater than 1, to
signal the difference between the common distribution oheaf
X1, X2, ..., Xn_1, X, and the distribution with the cumulative
distribution functionP used in Eq3. The numbers in parenthe-
ses in the tables indicate the order of magnitude of thefaignice
level for rejecting the null hypothesis, that is, for asserthat the
drawsX1, X, ..., X,—1, X, do not arise fromP.

Vb is the statisticV defined in Eq.4, with the X, Xa, ...,
X,_1, X, defining? in Eq. 4 drawn from a distribution with
the same probability density functignused for? and forP in
Eq.4. Ideally, V, should be small, not much larger than 1.

* V1, is the statisticl” defined in Eq.4, with the X3, X5, ...,
X,._1, X,, defining? in Eq. 4 drawn from a distribution that is
different from the distribution with the probability dehsifunc-
tion p used forP and forP in Eq. 4. Ideally, Vi should be large,
substantially greater than 1, to signal the difference betwthe
common distribution of each oYX, X5, ..., X,,_1, X, and the
distribution with the probability density functignused forP and
for P in Eg.4. The numbers in parentheses in the tables indicate
the order of magnitude of the significance level for rejegtine
null hypothesis, that is, for asserting that the dra¥us X, ...,
Xn—1, X, do not arise fromp. We used [2] to estimate the sig-
nificance level; this estimate can be conservativéfor

Wo is the statisticl defined in Eq.5, with the X1, X, ...,
Xn—1, X, in Eq.5drawn from a distribution with the same prob-
ability density functionp and distribution functiori? in Eq. 5.
Ideally, Wy should not be much less than 1.

PNAS | Issue Date | Volume | Issue Number | 3



* T is the statisticl defined in Eq.5, with the X7, X5, ..., 1/101
Xn-1, X, in Eq.5 drawn from a distribution that is different

from the distribution with the probability density functip used p(X)
in Eg.5 (p is used both directly and for defining the distribution
function P in Eq.5). Ideally, W should be small, substantially 0- P A— -
less than 1, to signal the difference between the commori-dist 0 100 101 102 20:
bution of each ofX;, X5, ..., X,—1, X,, and the distribution X
with the probability density functiop used in Eg5. The value of Fig. 1. The bimodal probability density function defined in Eq. 14.
W itself is the significance level for rejecting the null hypesis,
that is, for asserting that the drais , Xs, ..., X,—1, X,, do not 1/101
arise fromp.
ax)
A sawtooth wave. The probability density functiop for our first ex-
ample is 0 T T
0 101 20z
() = { 26-3- (x — k), z€(k,k+1)forke{0,1,...,999} X
p 0, otherwise Fig. 2. The unimodal probability density function defined in Eq. 15.
[12]
foranyx € R. 2
We compute the statisti€$, V', andIW defined in Egs3, 4, and5
for two sets of i.i.d. draws, first for i.i.d. draws distrilegt according 15

to p defined in Eq.12, and then for i.i.d. draws from the uniform
distribution on(0, 1000). Table 2 displays numerical results.

For this example, the classical Kuiper statigfiés unable to sig-
nal that the draws from the uniform distribution do not afizen p
defined in Eql12 for n < 107, at least not nearly as well as the mod-
ified Kuiper statistid’, which signals the discrepancy with very high
confidence for, > 10°. The statistidV’ signals the discrepancy with o 205 ) 05 1
high confidence fon > 10%, too. X

Fig. 3. The probability density function p defined in Eq. 16.

A step function. The probability density functiop for our second

example is a step function (a function which is constant arhéa- 1
terval in a particular partition of the real line into finigghany inter-
vals). In particular, we define 0.8
1078, ze (2k—1,2k)fork € {1,2,...,999} =08
px)=<¢ 107%, =z € (2k,2k+1)fork € {0,1,2,...,999} [y
0, otherwise
[13] 0.2
foranyz € R.
We compute the statisti¢g, V', andiV defined in Eqs3, 4, and5 o 205 ) 05 1
for two sets of i.i.d. draws, first for i.i.d. draws distriledt according X

to p defined in Eq.13, and then for i.i.d. draws from the uniform Fig. 4. The cumulative distribution function P defined in Eq. 1 for p in Eq. 16.
distribution on(0, 1999). Table 3 displays numerical results.

For this example, the classical Kuiper statigfiés unable to sig- 1
nal that the draws from the uniform distribution do not arfisem
p defined in Eqa3 for n < 106, at least not nearly as well as the 0.8
modified Kuiper statistid”, which signals the discrepancy with high
confidence forn > 102. The statistidV does not signal the discrep- ® 08
ancy for this example. & 04
A bimodal distribution. The probability density functiop for our 0.2
third example is
0
/10100, « € [0, 100] 0 0.40 o.)zg 119 158
(101 - 2)/101, =z € [100,101] Fig. 5. The distribution function P defined in Eq. 2 for p in Eq. 16
p(z): (x—l()l)/l()l, xG[lOl,lOQ] [14] ig. 5. The distribution function 7 defined in Eq. 2 for p in Eq. 16.
(202 — 2)/10100, =z € [102,202]
0, otherwise for anyz € R. Figure 2 plots;. Table 4 displays humerical results.

) For this example, the classical Kuiper statigfisignals that the
foranyz € R. Figure 1 plotsp. S draws fromg defined in Eq15 do not arise fronp defined in Eql14

We compute the statisti¢s, V, andV defined in Eqs3, 4, and5  ¢4r,, > 10°, and the modified Kuiper statisti¢ is inferior. The
for two sets of i.i.d. draws, first for i.i.d. draws distriledt according statisticl¥ signals the discrepancy with high confidencerfor 107,
to p defined in Eql4, and then for i.i.d. draws distributed according -
to the probability density functiog defined via the formula

B /1012, z €[0,101]
q(x) = { (202 — 5/10127 i € [101, 202] [15]
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Table 2. A sawtooth wave

n Uo U1 Vo ‘/1 WO Wl
10! A3E1 12E1 11E1 14E1 .24E1  49E-2
10? JA12E1 18E1  .10E1  .21E1 .37E0  45E-1

10> 82E0 .79E0 .13E1 .81E1 (10 °%)  18E1 .10E-2

10* 121 17E1  .13E1 252 (107 "F2%) 30E1 .72E-4
10° .10E1 .12E1 .18E1 .79E2 (10~ "F3) 18E0 .34E—4
10° 81E0 .14E1 .12E1 2563 (107 "F%)  11E1 .11E-4
10 151 191 .18E1 .79E3 (10~ "F°) 13E1 .38E-8
Table 3. A step function
n Uo U1 Vo V1 Wo W1
108 11E1  a12m2 32E-2 .13E1 10E2 .01E0
10° 11E1  .18E1 A0E-1  46E1 (10~ '° 10E3  .10E0
10> 10E1 .81E0 32E-1 16E2 (10~ 7F%)  10E1  .10E1
10* 151 17E1 A0E-1  50E2 (10 °F%)  10E2  .10E2
10° 11E1  .12E1 22E-1  16E3 (10 °F%)  10E3  .10E3
105 .70E0 .15E1 A9E-1 50E3 (10 °F%)  10E4  .10E4
107 6560 .33E1(107°) .12E-1 .16E4 (10~ °FS) 10E5 .10E5
Table4. A bimodal distribution
n Uop Uy Vo i Wo Wi
107 11E1 .14E1 11E1  .14E1 11E0  .98E-0
10° 15E1  .15E1 11E1  .12E1 37E0  .19E-0
10 11E1  .10E1 10E1  .13E1 21E1  .70E-1
107 121  .19E1 A5E1 .11E1 70E0  .68E-3
10° .10E1 .33E1(10°°%) 11E1  .18E1 88E0  .40E-3

10° 6560 .99E1(10 %%)  68E0 .57E1(10°2°)  .14EQ0 .25E-7
107 890 .31E2 (10~ '®3) 66E0 .16E2 (107 °F%) 29E0 .25E-6

Table5. A differentiable density function

n Uo U, Vo Vi Wo Wy
108 121 .74E0 11E1  .11E1 14E1  11E-2
10> 14E1 .11E1 A8E1 .30E1(107°) A3E1  .17E-3
10° 15E1 .14E1 92E0  57E1(107°°)  51E0 .22E-4

10* 86E0 .22E1(10°%)  12E1 .16E2 (10 2F?) 91E0 .12E-5
10° 121 58E1(10727) 12E1 52E2(10 °F%)  72E0 .12E-6

A differentiable density function.  The probability density functiop We compute the statistiés, V', andW defined in Eqs3, 4, and5

for our fourth example is for two sets of i.i.d. draws, first for i.i.d. draws distrileat according
to p defined in Eql16, and then for i.i.d. draws distributed according
to the probability density functiog defined via the formula

_ [ Ce (2 4 cos(13mx) 4 cos(397x)), € [—1,1] e lPl/2—2e7Y), ze[-1,1]
p(@) = { 0, otherwise a(z) = { 0, otherwise [17]
[16]
foranyz € R, whereC = .4 is the positive real number chosen for anyz € R. Table 5 displays numerical results.
such that[*°_p(x)dz = 1. Figure 3 plotgp. We evaluated numer- For this example, the classical Kuiper statidticignals that the

ically the corresponding cumulative distribution functi® defined draws fromg defined in Eq17 do not arise fronp defined in Eq16

in Eq.1, using the Chebfun package for Matlab described in [16]for n > 10%, but not nearly as well as the modified Kuiper statigfic
Figure 4 plotsP. We evaluated the distribution functid? defined  which signals the discrepancy with high confidencefgr 10%. The
in Eq. 2 using the general-purpose scheme described in the appenditatistici¥’ signals the discrepancy with high confidencerfor 102,

of [17] (which is also based on Chebfun). Figure 5 plBts too.
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Remark 6. For all but the last example, the cumulative distribution
function P defined in Eql and the distribution functiorP defined

in Eq. 2 are easy to calculate analytically; see, for example, [17].
However, as the last example illustrates, evaluatihgnd P can in
general require numerical algorithms such as the black-bahemes
described in the appendix of [17].

Remark 7. For all numerical examples reported above, at least one

of the modified Kuiper statistit” or the “new” statistic W is more
powerful than the classical Kuiper statisti¢, usually strikingly so.
However, we recommend using all three statistics in corjancto
be conservative. In fact, the statisticsand W of the present article
are not able to discern certain characteristics of probépitistribu-

ability). Numerical Exampleabove illustrates the substantial power
of the supplementary tests, relative to the classical.tests

Needless to say, the method of the present paper generalizes
straightforwardly to probability density functions of seal vari-
ables. There are also generalizations to discrete ditisita) whose
cumulative distribution functions are discontinuous.
If the probability density functiop involved in the definition of
the modified Kuiper test statistiz’ in Eq. 4 takes on only finitely
many values, then the confidence bounds of [3], [2], and Sec-
tions 14.3.3 and 14.3.4 of [1] are conservative, yieldingdothan
possible confidence levels that i.i.d. draws, X, ..., Xn—1, X,
do not arise fronp. It is probably feasible to compute the tightest

tions thatU can, such as the symmetry of a Gaussian. The classicR0SSible confidence levels (maybe without resorting to théows

Kuiper statisticU should be more powerful than its modificatidh
for any differentiable probability density function thaashonly one
local maximum. For a differentiable probability densityétion that
has only one local maximum, the “new” statisfit’ amounts to an
obvious test for outliers — nothing new (and far more subtteg-
dures for identifying outliers are available; see, for exze) [18]
and [19]). Still, as the above examples illustraié, and W can
be helpful with probability density functions that have tiplé local
maxima.

Conclusions and Generalizations

Monte Carlo method), though we may want to repl&cwith a bet-
ter statistic whem takes on only finitely many values; for example,
whenp takes on only finitely many values, we can literally and ex-
plicitly rearrangep to be nondecreasing on the shortest interval out-
side which it vanishes, and use the Kolmogorov-Smirnov aqgit
on the rearrangeg.

Even so, the confidence bounds of [3], [2], and Sections 34.3.
and 14.3.4 of [1] for the modified Kuiper test statisticin Eq. 4
are sharp for many probability density functignsFor example, the
bounds are sharp if, for every nonnegative real numgbhéne proba-
bility is 0 thatp(X) = y, whereX is a random variable distributed
according top. This covers most cases of practical interest. In gen-
eral, the tests of the present article are fully usable itr th&rent

In this paper, we complemented the classical tests of thgyyms, but may not yet be perfectly optimal for certain ctessf

Kolmogorov-Smirnov type with tests based on the plain faet it
is unlikely to draw a random number whose probability is $npab-
vided that the draw is taken from the same distribution usechl-
culating the probability (thus, if we draw a random numbeoag
probability is small, then we can be confident that we did matd
the number from the same distribution used in calculatimgpttob-
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