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We discuss several tests for whether a given set of indepen-
dent and identically distributed (i.i.d.) draws does not co me from
a specified probability density function. The most commonly
used are Kolmogorov-Smirnov tests, particularly Kuiper’s variant,
which focus on discrepancies between the cumulative distri bution
function for the specified probability density and the empir ical cu-
mulative distribution function for the given set of i.i.d. d raws. Un-
fortunately, variations in the probability density functi on often get
smoothed over in the cumulative distribution function, mak ing it
difficult to detect discrepancies in regions where the proba bility
density is small in comparison with its values in surroundin g re-
gions. We discuss tests without this deficiency, complement ing
the classical methods. The tests of the present paper are bas ed
on the plain fact that it is unlikely to draw a random number wh ose
probability is small, provided that the draw is taken from th e same
distribution used in calculating the probability (thus, if we draw a
random number whose probability is small, then we can be confi -
dent that we did not draw the number from the same distributio n
used in calculating the probability).

Kolmogorov-Smirnov | nonparametric | goodness-of-fit | outlier | distri-
bution function | nonincreasing rearrangement

A basic task in statistics is to ascertain whether a given set of
independent and identically distributed (i.i.d.) drawsX1, X2,

. . . , Xn−1, Xn does not come from a distribution with a specified
probability density functionp (the null hypothesis is thatX1, X2,
. . . , Xn−1, Xn do in fact come from the specifiedp). In the present
paper, we consider the case whenX1, X2, . . . , Xn−1, Xn are real
valued. In this case, the most commonly used approach is due to
Kolmogorov and Smirnov (with a popular modification by Kuiper);
see, for example, Sections 14.3.3 and 14.3.4 of [1], [2], [3], or Test
Statisticsbelow.

The Kolmogorov-Smirnov approach considers the size of the
discrepancy between the cumulative distribution functionfor p and
the empirical cumulative distribution function defined byX1, X2,
. . . , Xn−1, Xn (see, for example,Notation and Test Statisticsbe-
low for definitions of cumulative distribution functions and empirical
cumulative distribution functions). If the i.i.d. drawsX1, X2, . . . ,
Xn−1, Xn used to form the empirical cumulative distribution func-
tion are taken from the probability density functionp used in the
Kolmogorov-Smirnov test, then the discrepancy is small. Thus, if
the discrepancy is large, then we can be confident thatX1, X2, . . . ,
Xn−1, Xn do not come from a distribution with probability density
functionp.

However, the size of the discrepancy between the cumulative
distribution function forp and the empirical cumulative distribution
function constructed from the i.i.d. drawsX1, X2, . . . , Xn−1, Xn

does not always signal thatX1, X2, . . . ,Xn−1, Xn do not arise from
a distribution with the specified probability density function p, even
whenX1, X2, . . . , Xn−1, Xn do not in fact arise fromp. In some
cases,n has to be absurdly large for the discrepancy to be significant.
It is easy to see why:

The cumulative distribution function is an indefinite integral of
the probability density functionp. Therefore, the cumulative dis-
tribution function is a smoothed version of the probabilitydensity

function; focusing on the cumulative distribution function rather than
p itself makes it harder to detect discrepancies in regions where p
is small in comparison with its values in surrounding regions. For
example, consider the probability density functionp depicted in Fig-
ure 1 below (a “tent” with a narrow triangle removed at its apex) and
the probability density functionq depicted in Figure 2 below (nearly
the same “tent,” but with the narrow triangle intact, not removed).
The cumulative distribution functions forp and q are very similar,
so tests of the classical Kolmogorov-Smirnov type have trouble sig-
naling that i.i.d. draws taken fromq are actually not taken fromp.
Section 14.3.4 of [1] highlights this problem and a strategyfor its
solution, hence motivating us to write the present article.

We propose to supplement tests of the classical Kolmogorov-
Smirnov type with tests for whether any of the valuesp(X1), p(X2),
. . . , p(Xn−1), p(Xn) is small. If any of these values is small, then
we can be confident that the i.i.d. drawsX1, X2, . . . ,Xn−1, Xn did
not arise from the probability density functionp. Theorem 3 below
formalizes the notion of any ofp(X1), p(X2), . . . ,p(Xn−1), p(Xn)
being small. We also propose another complementary test, which
amounts to using the Kolmogorov-Smirnov approach after “rearrang-
ing” the probability density functionp so that it is nondecreasing
on the shortest interval outside which it vanishes (see Remark 2 and
Eq.4 below).

For descriptions of other generalizations of and alternatives to
the Kolmogorov-Smirnov approach (concerning issues distinct from
those treated in the present paper), see, for example, Sections 14.3.3
and 14.3.4 of [1], [2], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
and their compilations of references. For a more general approach,
based on customizing statistical tests for problem-specific families of
alternative hypotheses, see [14]. Below, we compare the test statis-
tics of the present article with one of the most commonly usedtest
statistics of the Kolmogorov-Smirnov type, namely Kuiper’s (see, for
example, [2], [3], orTest Statisticsbelow). We recommend using
the test statistics of the present paper in conjunction withthe Kuiper
statistic, to be conservative, as all these statistics complement each
other, helping compensate for their inevitable deficiencies.

There are at least two canonical applications. First, the tests
of the present article can be suitable for checking for malfunctions
with and bugs in computer codes that are supposed to generatepseu-
dorandom i.i.d. draws from specified probability density functions
(especially the complicated ones encountered frequently in practice).
Good software engineering requires such independent testsfor help-
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ing validate that computer codes produce correct results (of course,
such validations do not obviate careful, structured programming, but
are instead complementary). Second, many theories from physics
and physical chemistry predict (oftena priori) the probability den-
sity functions from which experiments are supposed to be taking i.i.d.
draws. The tests of the present paper can be suitable for ruling out
erroneous theories of this type, on the basis of experimental data.
Moreover, there are undoubtedly many other potential applications,
in addition to these two.

For definitions of the notation used throughout this article,
seeNotationbelow. Test Statisticsintroduces several statistical tests.
Numerical Examplesillustrates the power of the statistical tests.Con-
clusions and Generalizationsdraws some conclusions and proposes
directions for further work.
Remark 1. All tests used in the present paper do not require any
intervention by the user of suitable software implementations. The
tests are not a panacea; all such tests have the drawbacks discussed
in [14]. See [14] for a much more flexible alternative, allowing the
user to amend tests to be more powerful against user-specified para-
metric families of alternative hypotheses.

Notation
In this section, we set notation used throughout the presentpaper.

We useP to take the probability of an event. We say that
p is a probability density function to mean thatp is a (Lebesgue-
measurable) function fromR to [0,∞) such that the integral ofp
overR is 1.

The cumulative distribution functionP for a probability density
functionp is

P (x) =

Z

y≤x

p(y)dy [1]

for any real numberx. If X is a random variable distributed accord-
ing to p, thenP (x) is just the probability thatX ≤ x. Therefore, if
X is a random variable distributed according top, then the cumula-
tive distribution functionP for p(X) is

P(x) =

Z

p(y)≤x

p(y) dy, [2]

the probability thatp(X) ≤ x.
For reference, we summarize our (reasonably standard) nota-

tional conventions in Table 1.
Remark 2. The “nonincreasing rearrangement” (or nondecreasing
rearrangement) of a probability density function (see, forexample,
Section V.3 of [15]) clarifies the meaning of the distribution function
P defined in Eq.2. WithP defined in Eq.1 andP defined in Eq.2,
P(p(x)) = P (x) for any real numberx in the shortest interval out-
side which the probability density functionp vanishes, as long asp is
increasing on that shortest interval.

Test Statistics
In this section, we introduce several statistical tests.

One test of whether i.i.d. drawsX1, X2, . . . , Xn−1, Xn do
not arise from a specified probability density functionp is the

Table 1. Notational conventions

mathematical object typeface example
probability density function italic lowercase p(x)
cumulative distribution func. in Eq. 1 italic uppercase P (x)
distribution function defined in Eq. 2 script uppercase P(x)
taking the probability of an event bold uppercase P

˘

X ≤ x
¯

Kolmogorov-Smirnov test (or Kuiper’s often preferable variation). If
X is a random variable distributed according top, then another test is
to use the Kolmogorov-Smirnov or Kuiper test for the random vari-
ablep(X), whose cumulative distribution function isP in Eq.2. The
test statistic for the original Kuiper test is

U =

„√
n sup
−∞<x<∞

P (x) − P̂ (x)

«

−
„√

n inf
−∞<x<∞

P (x) − P̂ (x)

«

,

[3]
whereP̂ (x) is the empirical cumulative distribution function — the
number ofk such thatXk ≤ x, divided byn. The test statistic for
the Kuiper test forp(X) is therefore

V =

„√
n sup
0≤x<∞

P(x) − P̂(x)

«

−
„√

n inf
0≤x<∞

P(x) − P̂(x)

«

,

[4]
whereP̂(x) is the number ofk such thatp(Xk) ≤ x, divided byn.
Remark 2 above and Remark 5 below provide some motivation for
usingV , beyond its being a natural variation onU .

The rationale for using statistics such asU andV is the follow-
ing theorem, corollary, and the ensuing discussion (see, for example,
Sections 14.3.3 and 14.3.4 of [1], [3], or [2] for proofs and details).
Theorem 1. Suppose thatp is a probability density function,X is
a random variable distributed according top, andP is the cumula-
tive distribution function forX from Eq.1. Then, the distribution of
P (X) is the uniform distribution over[0, 1].
Corollary 2. Suppose thatp is a probability density function,X is a
random variable distributed according top, andP is the cumulative
distribution function forp(X) from Eq.2. Then, the cumulative dis-
tribution function ofP(p(X)) is less than or equal to the cumulative
distribution function of the uniform distribution over[0, 1]. More-
over, the distribution ofP(p(X)) is the uniform distribution over
[0, 1] if P is a continuous function (P is a continuous function when,
for every nonnegative real numbery, the probability thatp(X) = y
is 0).

Theorem 1 generalizes to the fact that, if the i.i.d. drawsX1, X2,
. . . ,Xn−1, Xn arise from the probability density functionp involved
in the definition ofU in Eq.3, then the distribution ofU does not de-
pend onp; the distribution ofU is the same for anyp. With high prob-
ability, U is not much greater than 1 when the i.i.d. drawsX1, X2,
. . . , Xn−1, Xn used in the definition ofU in Eq. 3 are taken from
the distribution whose probability density functionp and cumulative
distribution functionP are used in the definition ofU . Therefore, if
the statisticU that we compute turns out to be substantially greater
than 1, then we can have high confidence that the i.i.d. drawsX1, X2,
. . . ,Xn−1, Xn were not taken from the distribution whose probabil-
ity density functionp and cumulative distribution functionP were
used in the definition ofU . Similarly, if V defined in Eq.4 turns out
to be substantially greater than 1, then we can have high confidence
that the i.i.d. drawsX1, X2, . . . , Xn−1, Xn were not taken from
the distribution whose probability density functionp and distribution
function P were used in the definition ofV . For details, see, for
example, Sections 14.3.3 and 14.3.4 of [1], [3], or [2].

A third test statistic is

W = n min
1≤k≤n

P(p(Xk)). [5]

The following theorem (which follows immediately from Corol-
lary 2) and ensuing discussion characterizeW and its applications.
Theorem 3. Suppose thatp is a probability density function,n is a
positive integer,X1, X2, . . . ,Xn−1, Xn are i.i.d. random variables
each distributed according top,P is the cumulative distribution func-
tion for p(X1) from Eq.2, andW is the random variable defined in
Eq.5. Then,

P
˘

W ≤ x
¯

≤ 1 −
“

1 − x

n

”n

[6]

for anyx ∈ [0, n].
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For any positive real numberα < 1/2, we define

xα = n − n(1 − α)1/n; [7]

if W ≤ xα, then due to Eq.6 we can have at least[100(1 − α)]%
confidence that the i.i.d. drawsX1, X2, . . . ,Xn−1, Xn do not arise
from p. It follows from Eq.7 that

α ≤ xα < − ln(1−α) = α+ α2/2+α3/3 + . . . < α +α2, [8]

with xα = α for n = 1, andlimn→∞ xα = − ln(1 − α). There-
fore, if W ≤ α, then we have at least[100(1−α)]% confidence that
the i.i.d. drawsX1, X2, . . . ,Xn−1, Xn do not arise fromp. Taking
α = .01, for example, we have at least 99% confidence that the i.i.d.
drawsX1, X2, . . . ,Xn−1, Xn do not arise fromp, if W ≤ .01.
Remark 3. If W defined in Eq.5 is at most1, then we can have at
least [100(1 − W )]% confidence that the i.i.d. drawsX1, X2, . . . ,
Xn−1, Xn do not arise from the probability density functionp used
in Eq.5.
Remark 4. UsingW defined in Eq.5 along with the upper bound in
Eq.6 is optimal when the probability density functionp takes on only
finitely many values, or whenp has the property that, for every non-
negative real numbery, the probability is 0 thatp(X) = y, whereX
is a random variable distributed according top. In both cases, the
inequality in Eq.6 becomes the equality

P
˘

W ≤ n P(p(x))
¯

= 1 −
“

1 − P(p(x))
”n

[9]

for anyx ∈ R.
Remark 5. When the statisticW defined in Eq.5 is not powerful
enough to discriminate between two particular distributions, then a
natural alternative is the average

W̃ =
1

n

n
X

k=1

P(p(Xk)). [10]

The Kuiper test statisticV defined in Eq.4 is a more refined version
of this alternative, and we recommend usingV instead ofW̃ , in con-
junction with the use ofW and U defined in Eq.3. We could also
consider more general averages of the form

f

 

1

n

n
X

k=1

g
“

P(p(Xk))
”

!

, [11]

wheref and g are functions; obvious candidates includef(x) =

exp(x) and g(x) = ln(x), and f(x) = 1 − x1/q and g(x) =
(1 − x)q, with q ∈ (1,∞).

Numerical Examples
In this section, we illustrate the effectiveness of the teststatistics of
the present paper via several numerical experiments. For each ex-
periment, we compute the statisticsU , V , andW defined in Eqs.3,
4, and5 for two sets of i.i.d. draws, first for i.i.d. drawsX1, X2,
. . . , Xn−1, Xn taken from the distribution whose probability den-
sity functionp, cumulative distribution functionP , and distribution
functionP are used in the definitions ofU , V , andW in Eqs.3, 4,
and5, and second for i.i.d. drawsX1, X2, . . . ,Xn−1, Xn taken from
a different distribution.

The test statisticsU andV defined in Eqs.3 and4 are the same,
except thatU concerns a random variableX drawn from a probability
density functionp, whileV concernsp(X). We can directly compare
the values ofU andV for various distributions in order to gauge their
relative discriminative powers. Ideally,U andV should not be much
greater than 1 when the i.i.d. drawsX1, X2, . . . ,Xn−1, Xn used in
the definitions ofU andV in Eqs.3 and4 are taken from the distri-
bution whose probability density functionp, cumulative distribution
functionP , and distribution functionP are used in the definitions of

U andV ; U andV should be substantially greater than 1 when the
i.i.d. drawsX1, X2, . . . , Xn−1, Xn are taken from a different dis-
tribution, to signal the difference between the common distribution
of each ofX1, X2, . . . ,Xn−1, Xn and the distribution whose prob-
ability density functionp, cumulative distribution functionP , and
distribution functionP are used in the definitions ofU andV .

For details concerning the interpretation of and significance lev-
els for the Kuiper test statisticsU andV defined in Eqs.3 and 4,
see Sections 14.3.3 and 14.3.4 of [1], [2], or [3]; both one- and two-
tailed hypothesis tests are available, for any finite numbern of draws
X1, X2, . . . ,Xn−1, Xn, and also in the limit of largen. In short, if
X1, X2, . . . ,Xn−1, Xn are i.i.d. random variables drawn according
to a continuous cumulative distribution functionP , then the comple-
mentary cumulative distribution function ofU defined in Eq.3 for
the same cumulative distribution functionP has an upper tail that
decays nearly as fast as the complementary error function. Although
the details are complicated (varying withn and with the form — one-
tailed or two-tailed — of the hypothesis test), the probability that U
is greater than 2 is at most 1% whenX1, X2, . . . ,Xn−1, Xn used in
Eq. 3 are drawn according to the same cumulative distribution func-
tion P as used in Eq.3.

As described in Remark 3, the interpretation of the test statistic
W defined in Eq.5 is simple: IfW defined in Eq.5 is at most 1, then
we can have at least[100(1 − W )]% confidence that the i.i.d. draws
X1, X2, . . . , Xn−1, Xn do not arise from the probability density
functionp used in Eq.5.

Tables 2–5 display numerical results for the examples described
in the subsections below. The following list describes the headings
of the tables:

• n is the number of i.i.d. drawsX1, X2, . . . , Xn−1, Xn taken to
form the statisticsU , V , andW defined in Eqs.3, 4, and5.

• U0 is the statisticU defined in Eq.3, with the X1, X2, . . . ,
Xn−1, Xn definingP̂ in Eq.3 drawn from a distribution with the
same cumulative distribution functionP as used in Eq.3. Ideally,
U0 should be small, not much larger than 1.

• U1 is the statisticU defined in Eq.3, with the X1, X2, . . . ,
Xn−1, Xn defining P̂ in Eq. 3 drawn from a distribution with
a cumulative distribution function that is different fromP used in
Eq.3. Ideally,U1 should be large, substantially greater than 1, to
signal the difference between the common distribution of each of
X1, X2, . . . ,Xn−1, Xn and the distribution with the cumulative
distribution functionP used in Eq.3. The numbers in parenthe-
ses in the tables indicate the order of magnitude of the significance
level for rejecting the null hypothesis, that is, for asserting that the
drawsX1, X2, . . . ,Xn−1, Xn do not arise fromP .

• V0 is the statisticV defined in Eq.4, with the X1, X2, . . . ,
Xn−1, Xn defining P̂ in Eq. 4 drawn from a distribution with
the same probability density functionp used forP̂ and forP in
Eq.4. Ideally,V0 should be small, not much larger than 1.

• V1 is the statisticV defined in Eq.4, with the X1, X2, . . . ,
Xn−1, Xn definingP̂ in Eq. 4 drawn from a distribution that is
different from the distribution with the probability density func-
tion p used forP̂ and forP in Eq.4. Ideally,V1 should be large,
substantially greater than 1, to signal the difference between the
common distribution of each ofX1, X2, . . . ,Xn−1, Xn and the
distribution with the probability density functionp used forP̂ and
for P in Eq.4. The numbers in parentheses in the tables indicate
the order of magnitude of the significance level for rejecting the
null hypothesis, that is, for asserting that the drawsX1, X2, . . . ,
Xn−1, Xn do not arise fromp. We used [2] to estimate the sig-
nificance level; this estimate can be conservative forV .

• W0 is the statisticW defined in Eq.5, with the X1, X2, . . . ,
Xn−1, Xn in Eq.5 drawn from a distribution with the same prob-
ability density functionp and distribution functionP in Eq. 5.
Ideally,W0 should not be much less than 1.
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• W1 is the statisticW defined in Eq.5, with the X1, X2, . . . ,
Xn−1, Xn in Eq. 5 drawn from a distribution that is different
from the distribution with the probability density function p used
in Eq. 5 (p is used both directly and for defining the distribution
functionP in Eq. 5). Ideally, W1 should be small, substantially
less than 1, to signal the difference between the common distri-
bution of each ofX1, X2, . . . , Xn−1, Xn and the distribution
with the probability density functionp used in Eq.5. The value of
W1 itself is the significance level for rejecting the null hypothesis,
that is, for asserting that the drawsX1, X2, . . . ,Xn−1, Xn do not
arise fromp.

A sawtooth wave. The probability density functionp for our first ex-
ample is

p(x) =



2E–3 · (x − k), x∈ (k, k + 1) for k∈{0, 1, . . . , 999}
0, otherwise

[12]
for anyx ∈ R.

We compute the statisticsU , V , andW defined in Eqs.3, 4, and5
for two sets of i.i.d. draws, first for i.i.d. draws distributed according
to p defined in Eq.12, and then for i.i.d. draws from the uniform
distribution on(0, 1000). Table 2 displays numerical results.

For this example, the classical Kuiper statisticU is unable to sig-
nal that the draws from the uniform distribution do not arisefrom p
defined in Eq.12 for n ≤ 107, at least not nearly as well as the mod-
ified Kuiper statisticV , which signals the discrepancy with very high
confidence forn ≥ 103. The statisticW signals the discrepancy with
high confidence forn ≥ 103, too.

A step function. The probability density functionp for our second
example is a step function (a function which is constant on each in-
terval in a particular partition of the real line into finitely many inter-
vals). In particular, we define

p(x) =

8

<

:

10−3, x ∈ (2k − 1, 2k) for k ∈ {1, 2, . . . , 999}
10−6, x ∈ (2k, 2k + 1) for k ∈ {0, 1, 2, . . . , 999}

0, otherwise
[13]

for anyx ∈ R.
We compute the statisticsU , V , andW defined in Eqs.3, 4, and5

for two sets of i.i.d. draws, first for i.i.d. draws distributed according
to p defined in Eq.13, and then for i.i.d. draws from the uniform
distribution on(0, 1999). Table 3 displays numerical results.

For this example, the classical Kuiper statisticU is unable to sig-
nal that the draws from the uniform distribution do not arisefrom
p defined in Eq.13 for n ≤ 106, at least not nearly as well as the
modified Kuiper statisticV , which signals the discrepancy with high
confidence forn ≥ 102. The statisticW does not signal the discrep-
ancy for this example.

A bimodal distribution. The probability density functionp for our
third example is

p(x) =

8

>

>

>

<

>

>

>

:

x/10100, x ∈ [0, 100]
(101 − x)/101, x ∈ [100, 101]
(x − 101)/101, x ∈ [101, 102]

(202 − x)/10100, x ∈ [102, 202]
0, otherwise

[14]

for anyx ∈ R. Figure 1 plotsp.
We compute the statisticsU , V , andW defined in Eqs.3, 4, and5

for two sets of i.i.d. draws, first for i.i.d. draws distributed according
to p defined in Eq.14, and then for i.i.d. draws distributed according
to the probability density functionq defined via the formula

q(x) =



x/1012, x ∈ [0, 101]
(202 − x)/1012, x ∈ [101, 202]

[15]

101 2020 100 102

1/101

0

x

p(x)

Fig. 1. The bimodal probability density function defined in Eq. 14.

101 2020

1/101

x

0

q(x)

Fig. 2. The unimodal probability density function defined in Eq. 15.
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Fig. 3. The probability density function p defined in Eq. 16.
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Fig. 4. The cumulative distribution function P defined in Eq. 1 for p in Eq. 16.
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Fig. 5. The distribution function P defined in Eq. 2 for p in Eq. 16.

for anyx ∈ R. Figure 2 plotsq. Table 4 displays numerical results.
For this example, the classical Kuiper statisticU signals that the

draws fromq defined in Eq.15 do not arise fromp defined in Eq.14
for n ≥ 105, and the modified Kuiper statisticV is inferior. The
statisticW signals the discrepancy with high confidence forn ≥ 104.
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Table 2. A sawtooth wave

n U0 U1 V0 V1 W0 W1

101 .13E1 .12E1 .11E1 .14E1 .24E1 .49E–2

102 .12E1 .18E1 .10E1 .21E1 .37E0 .45E–1

103 .82E0 .79E0 .13E1 .81E1 (10−54) .18E1 .10E–2

104 .12E1 .17E1 .13E1 .25E2 (10−7E2) .30E1 .72E–4

105 .10E1 .12E1 .18E1 .79E2 (10−7E3) .18E0 .34E–4

106 .81E0 .14E1 .12E1 .25E3 (10−7E4) .11E1 .11E–4

107 .15E1 .19E1 .18E1 .79E3 (10−7E5) .13E1 .38E–8

Table 3. A step function

n U0 U1 V0 V1 W0 W1

101 .11E1 .12E1 .32E–2 .13E1 .10E2 .01E0

102 .11E1 .18E1 .10E–1 .46E1 (10−16) .10E3 .10E0

103 .10E1 .81E0 .32E–1 .16E2 (10−2E2) .10E1 .10E1

104 .15E1 .17E1 .10E–1 .50E2 (10−3E3) .10E2 .10E2

105 .11E1 .12E1 .22E–1 .16E3 (10−3E4) .10E3 .10E3

106 .70E0 .15E1 .19E–1 .50E3 (10−3E5) .10E4 .10E4

107 .65E0 .33E1 (10−8) .12E–1 .16E4 (10−3E6) .10E5 .10E5

Table 4. A bimodal distribution

n U0 U1 V0 V1 W0 W1

101 .11E1 .14E1 .11E1 .14E1 .11E0 .98E–0

102 .15E1 .15E1 .11E1 .12E1 .37E0 .19E–0

103 .11E1 .10E1 .10E1 .13E1 .21E1 .70E–1

104 .12E1 .19E1 .15E1 .11E1 .70E0 .68E–3

105 .10E1 .33E1 (10−8) .11E1 .18E1 .88E0 .40E–3

106 .65E0 .99E1 (10−82) .68E0 .57E1 (10−25) .14E0 .25E–7

107 .89E0 .31E2 (10−1E3) .66E0 .16E2 (10−2E2) .29E0 .25E–6

Table 5. A differentiable density function

n U0 U1 V0 V1 W0 W1

101 .12E1 .74E0 .11E1 .11E1 .14E1 .11E–2

102 .14E1 .11E1 .18E1 .30E1 (10−5) .13E1 .17E–3

103 .15E1 .14E1 .92E0 .57E1 (10−26) .51E0 .22E–4

104 .86E0 .22E1 (10−3) .12E1 .16E2 (10−2E2) .91E0 .12E–5

105 .12E1 .58E1 (10−27) .12E1 .52E2 (10−3E3) .72E0 .12E–6

A differentiable density function. The probability density functionp
for our fourth example is

p(x) =



C e−|x| (2 + cos(13πx) + cos(39πx)), x ∈ [−1, 1]
0, otherwise

[16]
for any x ∈ R, whereC ≈ .4 is the positive real number chosen
such that

R∞

−∞
p(x)dx = 1. Figure 3 plotsp. We evaluated numer-

ically the corresponding cumulative distribution function P defined
in Eq.1, using the Chebfun package for Matlab described in [16].
Figure 4 plotsP . We evaluated the distribution functionP defined
in Eq.2 using the general-purpose scheme described in the appendix
of [17] (which is also based on Chebfun). Figure 5 plotsP .

We compute the statisticsU , V , andW defined in Eqs.3, 4, and5
for two sets of i.i.d. draws, first for i.i.d. draws distributed according
to p defined in Eq.16, and then for i.i.d. draws distributed according
to the probability density functionq defined via the formula

q(x) =



e−|x|/(2 − 2 e−1), x ∈ [−1, 1]
0, otherwise

[17]

for anyx ∈ R. Table 5 displays numerical results.
For this example, the classical Kuiper statisticU signals that the

draws fromq defined in Eq.17 do not arise fromp defined in Eq.16
for n ≥ 104, but not nearly as well as the modified Kuiper statisticV ,
which signals the discrepancy with high confidence forn ≥ 102. The
statisticW signals the discrepancy with high confidence forn ≥ 102,
too.
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Remark 6. For all but the last example, the cumulative distribution
functionP defined in Eq.1 and the distribution functionP defined
in Eq. 2 are easy to calculate analytically; see, for example, [17].
However, as the last example illustrates, evaluatingP andP can in
general require numerical algorithms such as the black-boxschemes
described in the appendix of [17].

Remark 7. For all numerical examples reported above, at least one
of the modified Kuiper statisticV or the “new” statisticW is more
powerful than the classical Kuiper statisticU , usually strikingly so.
However, we recommend using all three statistics in conjunction, to
be conservative. In fact, the statisticsV andW of the present article
are not able to discern certain characteristics of probability distribu-
tions thatU can, such as the symmetry of a Gaussian. The classical
Kuiper statisticU should be more powerful than its modificationV
for any differentiable probability density function that has only one
local maximum. For a differentiable probability density function that
has only one local maximum, the “new” statisticW amounts to an
obvious test for outliers — nothing new (and far more subtle proce-
dures for identifying outliers are available; see, for example, [18]
and [19]). Still, as the above examples illustrate,V and W can
be helpful with probability density functions that have multiple local
maxima.

Conclusions and Generalizations
In this paper, we complemented the classical tests of the
Kolmogorov-Smirnov type with tests based on the plain fact that it
is unlikely to draw a random number whose probability is small, pro-
vided that the draw is taken from the same distribution used in cal-
culating the probability (thus, if we draw a random number whose
probability is small, then we can be confident that we did not draw
the number from the same distribution used in calculating the prob-

ability). Numerical Examplesabove illustrates the substantial power
of the supplementary tests, relative to the classical tests.

Needless to say, the method of the present paper generalizes
straightforwardly to probability density functions of several vari-
ables. There are also generalizations to discrete distributions, whose
cumulative distribution functions are discontinuous.

If the probability density functionp involved in the definition of
the modified Kuiper test statisticV in Eq. 4 takes on only finitely
many values, then the confidence bounds of [3], [2], and Sec-
tions 14.3.3 and 14.3.4 of [1] are conservative, yielding lower than
possible confidence levels that i.i.d. drawsX1, X2, . . . , Xn−1, Xn

do not arise fromp. It is probably feasible to compute the tightest
possible confidence levels (maybe without resorting to the obvious
Monte Carlo method), though we may want to replaceV with a bet-
ter statistic whenp takes on only finitely many values; for example,
whenp takes on only finitely many values, we can literally and ex-
plicitly rearrangep to be nondecreasing on the shortest interval out-
side which it vanishes, and use the Kolmogorov-Smirnov approach
on the rearrangedp.

Even so, the confidence bounds of [3], [2], and Sections 14.3.3
and 14.3.4 of [1] for the modified Kuiper test statisticV in Eq. 4
are sharp for many probability density functionsp. For example, the
bounds are sharp if, for every nonnegative real numbery, the proba-
bility is 0 thatp(X) = y, whereX is a random variable distributed
according top. This covers most cases of practical interest. In gen-
eral, the tests of the present article are fully usable in their current
forms, but may not yet be perfectly optimal for certain classes of
probability distributions.
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