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FAST ALGORITHMS FOR SPHERICAL HARMONIC EXPANSIONS∗

VLADIMIR ROKHLIN† AND MARK TYGERT‡

Abstract. An algorithm is introduced for the rapid evaluation at appropriately chosen nodes
on the two-dimensional sphere S2 in R

3 of functions specified by their spherical harmonic expansions
(known as the inverse spherical harmonic transform), and for the evaluation of the coefficients in
spherical harmonic expansions of functions specified by their values at appropriately chosen points
on S2 (known as the forward spherical harmonic transform). The procedure is numerically stable
and requires an amount of CPU time proportional to N2(logN) log(1/ε), where N2 is the number
of nodes in the discretization of S2, and ε is the precision of computations. The performance of the
algorithm is illustrated via several numerical examples.
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1. Introduction. Spherical harmonic expansions are a widely used and well-
understood tool of applied mathematics; they are encountered, inter alia, in weather
and climate modeling, in the representation of gravitational, topographic, and mag-
netic data in geophysics, in the numerical solution of certain partial differential equa-
tions, etc. The role of spherical harmonic expansions in diagonalizing the Laplacian
in three dimensions is similar to the role played by Fourier series expansions in two
dimensions.

The spherical harmonic expansion of a function f in L2(S2) is the series of the
form

f(θ, ϕ) =

∞∑
l=0

l∑
m=−l

αm
l P

|m|
l (cos θ) eimϕ,(1.1)

where (θ, ϕ) are the standard spherical coordinates on the two-dimensional sphere
S2 in R

3, 0 ≤ θ < π and 0 ≤ ϕ < 2π, and Pm
l is the associated Legendre function

of degree l and order m. While the functions {P |m|
l (cos θ) eimθ} constitute a basis of

L2(S2) that is orthogonal, that is,

∫ 1

−1

P
|m|
k (x)P

|m|
l (x) dx = 0(1.2)

when l �= k, their norms are not equal to 1; in fact, they are so badly normalized
as to be virtually unusable in numerical calculations (see section 2.1 for a detailed
discussion of the associated Legendre functions). Therefore, it is customary to replace
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expansions of the form (1.1) with expansions of the form

f(θ, ϕ) =
∞∑
l=0

l∑
m=−l

αm
l P

|m|
l (cos θ) eimϕ,(1.3)

where P
|m|
l denotes the normalized version of the associated Legendre function P

|m|
l ,

defined on [−1, 1] via the formula

P
|m|
l (x) = (−1)|m|

√
2l + 1

2

(l − |m|)!
(l + |m|)! P

|m|
l (x),(1.4)

so that ∫ 1

−1

(
P

|m|
l (x)

)2

dx = 1.(1.5)

In numerical practice, the series (1.3) is truncated after a finite number of terms,
leading to expressions of the form

f(θ, ϕ) ∼
N∑
l=0

l∑
m=−l

αm
l P

|m|
l (cos θ) eimϕ.(1.6)

Formula (1.6) is viewed as an approximation to the function f , and N is called
the order of the expansion (1.6). Obviously, the expansion (1.6) contains (N + 1)2

terms; the order N required to obtain a prescribed accuracy of the approximation is
determined by the complexity of the function f .

Frequently, the need arises to evaluate the coefficients in an expansion of the
form (1.6) for a function f given by a table of its values at a collection of appropri-
ately chosen nodes on S2; conversely, given the coefficients in (1.6), one often needs
to evaluate f at a collection of points on S2. The former is usually called the for-
ward spherical harmonic transform, and the latter is known as the inverse spherical
harmonic transform. A standard discretization of S2 is the “tensor product,” con-
sisting of all pairs of the form (θk, ϕj), with equispaced nodes θ0, θ1, . . . , θN−1, θN
discretizing the interval [0, π], defined by the formula

θk =
π(k + 1/2)

N + 1
,(1.7)

and equispaced nodes ϕ0, ϕ1, . . . , ϕ2N−1, ϕ2N discretizing the interval [0, 2π], defined
by the formula

ϕj =
2π(j + 1/2)

2N + 1
.(1.8)

This leads immediately to numerical schemes for both the forward and inverse spheri-
cal harmonic transforms costing O(N3) operations. Indeed, given a function f defined
on S2 by the formula (1.6), one can rewrite (1.6) in the form

f(θ, ϕ) =

N∑
m=−N

eimϕ
N∑

l=|m|
αm
l P

|m|
l (cos θ).(1.9)
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For a fixed value of θ, each of the inner sums in (1.9) contains no more than
N + 1 terms, and there are 2N + 1 such sums (one for each value of m); since the
inverse spherical harmonic transform involves N + 1 values θ0, θ1, . . . , θN−1, θN , the
cost of evaluating all inner sums in (1.9) is O(N3). Once all inner sums have been
evaluated, evaluation of each outer sum costs O(N) operations (since each of them
contains 2N + 1 terms), and there are O(N2) such sums to be evaluated, leading to
O(N3) CPU time requirements for the evaluation of all outer sums in (1.9). The cost
of the evaluation of the whole inverse spherical harmonic transform (in the form (1.9))
is the sum of the costs for the inner and outer sums, and is also O(N3); a virtually
identical calculation shows that the cost of evaluating the forward spherical harmonic
transform is also O(N3).

A trivial modification of the scheme described in the preceding paragraph uses the
fast Fourier transform to evaluate the outer sums in (1.9), roughly halving the CPU
time requirements of the whole procedure. Several other considerations (see, for exam-
ple, [2], [18]) can be used to reduce the CPU time requirements by a further factor of 4
or so, but there is no simple trick for reducing the asymptotic CPU time requirements
of the whole spherical harmonic transform (either forward or inverse) below N3. In
this paper, we introduce algorithms for both forward and inverse spherical harmonic
transforms with CPU time requirements proportional to N2(logN) log(1/ε), where ε
is the precision of computations.

The algorithm of this paper is a procedure for the rapid evaluation of the inner
sums in expressions of the form (1.9). It is based principally on two observations, as
follows.

1. The differential equations defining the functions P
m

l with arbitrary positive

integer m are very close to the differential equations defining the functions P
1

l and

P
2

l .
2. There exist fast algorithms for decomposing functions into and reconstructing

functions from sums of the forms

f(x) =

N∑
l=0

p1
l P

1

l (x),(1.10)

f(x) =

N∑
l=0

p2
l P

2

l (x).(1.11)

We use the connections between the functions P
m

l with arbitrary positive integer

m and the functions P
1

l and P
2

l to apply rapidly to arbitrary vectors the matrices
converting between expansions of the forms (1.10) and (1.11) and expansions of the
form

f(x) =

N∑
l=0

pml P
m

l (x).(1.12)

This step utilizes the observation made in [4] that the N ×N matrix of eigenvectors
of the sum of a diagonal matrix and a semiseparable matrix (see section 2.4 for the
definition of a semiseparable matrix) can be applied to an arbitrary vector of length
N for a cost proportional to N(logN) log(1/ε) operations, where ε is the precision of
computations.

During the last several years, the interest in fast transforms has been growing,
stimulated by the combination of recent progress in fast algorithms of various kinds
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with the importance of the fast Fourier transform in computational mathematics,
electrical engineering, etc., and by the success of various types of multilevel computa-
tional techniques. In particular, several prior attempts have been made to construct
numerically stable fast spherical harmonic transforms.

Schemes have been constructed that are fast, but unstable in floating point arith-
metic; [10], [9], [12] elucidate this approach, and the ongoing efforts to stabilize algo-
rithms of this type. Other schemes have been proposed that are instead approximate,
performing calculations up to an arbitrary but fixed precision ε. In [13], a proce-
dure is described with the asymptotic CPU time estimate O(N5/2(logN) log(1/ε))
for either the forward or the inverse spherical harmonic transform. Also in [13], an
algorithm is proposed whose asymptotic CPU time requirements are conjectured to
be O(N2(logN)2 log(1/ε)); this estimate is not fully proved in [13], and the numerical
results presented there do not unequivocally support it. A different approach is pro-
posed in [16], [17]; like the approaches of both [13] and the present paper, the scheme
of [17] is based on analytical (rather than algebraic) techniques. The asymptotic
CPU time requirements of the procedure described in [17] are O(N2(logN) log(1/ε));
while [16], [17] report work in progress, we expect this attack to be successful. Finally,
it should be observed that some of the papers describing fast spherical transforms com-
pare the actual timings obtained in them to those produced by the straightforward
matrix-vector multiplication scheme, while others compare to the “semi-naive” algo-
rithm described in [10], [2]. It should be kept in mind that the “semi-naive” scheme
is about twice as fast as the straightforward one.

It should also be observed that the algorithm of this paper is not intended to be
used as a component in what are known as “spherical filters” (see, for example, [11]);
special purpose schemes of the type originated in [11] tend to be considerably faster
than the scheme presented here.

The structure of this paper is as follows. In section 2, we summarize a number
of facts (from both mathematical and numerical analysis) to be used in the rest
of the paper; all of the content of section 2 is either well known or follows easily
from well-known facts. In section 3, we build the analytical apparatus to be used
in the construction of the algorithms of this paper. Section 4 contains an informal
description of the algorithm, and in section 5 the procedure is described in detail.
The performance of the scheme is illustrated with numerical examples in section 6,
and section 7 contains a discussion of possible applications of the approach of this
paper in other environments.

2. Mathematical and numerical preliminaries. In this section, we summa-
rize several facts from mathematical and numerical analysis. Please note that in this
section and throughout this paper, the variable x always takes arbitrary values in
[−1, 1], θ takes values in [0, π], and ϕ takes values in [0, 2π]. We will always use the
term “eigenvector” to mean “normalized eigenvector.”

2.1. Spherical harmonics and associated Legendre functions. In this sec-
tion, we summarize a number of properties of spherical harmonics and associated
Legendre functions; all of these can be found, for example, in [1].

The coefficients in the spherical harmonic expansion (1.6) of a function f in L2(S2)
are given by the formula

αm
l =

∫ π

0

∫ 2π

0

P
|m|
l (cos θ) e−imϕ f(θ, ϕ) sin θ dϕ dθ.(2.1)
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For the forward spherical harmonic transform of order N , we have to compute the
coefficients (2.1) from the values f(θk, ϕj), where θ0, θ1, . . . , θN−1, θN are defined
in (1.7), and ϕ0, ϕ1, . . . , ϕ2N−1, ϕ2N are defined in (1.8). For a cost of O(N2 logN),
we use the fast Fourier transform to obtain the 2(2N + 1)(N + 1) values gm(θk) and
hm(θk) (m = −N , −N + 1, . . . , N − 1, N ; k = 0, 1, . . . , N − 1, N) of the functions
gm and hm defined on [0, π] by the formulae

gm(θ) =

2N∑
j=0

cos(mϕj) f(θ, ϕj),(2.2)

hm(θ) =

2N∑
j=0

sin(mϕj) f(θ, ϕj).(2.3)

We then evaluate the coefficients (2.1) via the formula

αm
l =

∫ π

0

P
|m|
l (cos θ) gm(θ) sin θ dθ − i

∫ π

0

P
|m|
l (cos θ)hm(θ) sin θ dθ.(2.4)

To evaluate the integrals in (2.4), we have to convert the values fm(cos θk) into
the coefficients pmm, pmm+1, . . . , p

m
N−1, p

m
N in expansions of functions fm on [−1, 1] of

the form

fm(x) =

N∑
l=m

pml P
m

l (x),(2.5)

pml =

∫ 1

−1

P
m

l (x) fm(x) dx,(2.6)

where m is any integer with 0 ≤ m ≤ N .
The principal purpose of this paper is the construction of a “fast” scheme for

computing the coefficients (2.6) from the values fm(cos θk), and for computing the
inverse of this transformation, that is, for computing the values fm(cos θk) of the
function fm defined in (2.5) from the coefficients (2.6).

For any nonnegative integers l and m with m ≤ l, the associated Legendre function
Pm
l on [−1, 1] is defined by the formula

Pm
l (x) = (−1)m

√
1 − x2

m dm

dxm
Pl(x),(2.7)

where Pl is the Legendre polynomial of degree l. Obviously, Pm
l is a polynomial when

m is even and a polynomial multiplied by
√

1 − x2 when m is odd.
For any nonnegative integer m, we define the differential operator Lm by the

formula

Lm(f)(x) = − d

dx

(
(1 − x2)

d

dx
f(x)

)
+

m2

1 − x2
f(x)(2.8)

for any function f on [−1, 1] with a continuous second derivative. For any nonnegative
integers l and m with m ≤ l, the function P

m

l satisfies the differential equation

Lm

(
P

m

l

)
(x) = l(l + 1) P

m

l (x),(2.9)
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where the differential operator Lm is defined in (2.8).
For any integers l and m with 0 ≤ m ≤ l and l > 0,

(2l + 1)xPm
l (x) = (l + m)Pm

l−1(x) + (l −m + 1)Pm
l+1(x).(2.10)

For any nonnegative integers l and m with 1 ≤ m ≤ l,∫ 1

−1

P
m

l (x)
1

1 − x2
P

m

l (x) dx =
2l + 1

2m
.(2.11)

Lemma 2.1. Suppose that l and m are even integers such that 2 ≤ m ≤ l. Then,
there exist l/2 real numbers ξ0, ξ1, . . . , ξl/2−2, ξl/2−1 such that

P
m

l (x) =

l/2−1∑
k=0

ξk P
2

2k+2(x).(2.12)

Lemma 2.2. Suppose that l and m are integers such that m is even, l is odd, and
2 ≤ m < l. Then, there exist (l − 1)/2 real numbers ξ0, ξ1, . . . , ξ(l−1)/2−2, ξ(l−1)/2−1

such that

P
m

l (x) =

(l−1)/2−1∑
k=0

ξk P
2

2k+3(x).(2.13)

Lemma 2.3. Suppose that l and m are integers such that m is odd, l is even, and
1 ≤ m < l. Then, there exist l/2 real numbers ξ0, ξ1, . . . , ξl/2−2, ξl/2−1 such that

P
m

l (x) =

l/2−1∑
k=0

ξk P
1

2k+2(x).(2.14)

Lemma 2.4. Suppose that l and m are odd integers such that 1 ≤ m ≤ l. Then,
there exist (l + 1)/2 real numbers ξ0, ξ1, . . . , ξ(l+1)/2−2, ξ(l+1)/2−1 such that

P
m

l (x) =

(l+1)/2−1∑
k=0

ξk P
1

2k+1(x).(2.15)

2.2. Chebyshev polynomials. In this section, we cite the existence of a fast
algorithm for computing with Chebyshev polynomials.

For any nonnegative integer k, we define Tk to be the Chebyshev polynomial of
degree k of the first kind, defined by the formula

Tk(cos θ) = cos(kθ)(2.16)

for any real θ, and Uk to be the Chebyshev polynomial of degree k of the second kind,
defined by the formula

Uk(cos θ) =
sin((k + 1)θ)

sin θ
(2.17)

for any real θ.
The following observation cites the relationship between the fast Fourier transform

and expansions in series of Chebyshev polynomials.
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Observation 2.5. Suppose that N ≥ 0 is an integer, c0, c1, . . . , cN−1, cN and
u0, u1, . . . , uN−1, uN are real numbers, and f and g are the functions on [−1, 1]
defined by the formulae

f(x) =
N∑

k=0

ck Tk(x),(2.18)

g(x) =
N∑

k=0

uk

√
1 − x2 Uk(x).(2.19)

Then, there exists an algorithm which uses O(N logN) operations to convert the
coefficients c0, c1, . . . , cN−1, cN into the values f(x0), f(x1), . . . , f(xN−1), f(xN ), and
to convert the coefficients u0, u1, . . . , uN−1, uN into the values g(x0), g(x1), . . . , g(xN−1),
g(xN ), where the sampling locations x0, x1, . . . , xN−1, xN are defined by the formula

xk = cos

(
π(k + 1/2)

N + 1

)
.(2.20)

Moreover, there exists an algorithm which uses O(N logN) operations to convert the
values f(x0), f(x1), . . . , f(xN−1), f(xN ) into the coefficients c0, c1, . . . , cN−1, cN , and
to convert the values g(x0), g(x1), . . . , g(xN−1), g(xN ) into the coefficients u0, u1, . . . ,
uN−1, uN (see, for example, [14]).

2.3. Associated Legendre functions of low orders. In this section, we sum-
marize certain simple relationships between Chebyshev polynomials and associated
Legendre functions of orders 1 and 2. These relationships are a straightforward conse-
quence of formulae 7.112.1, 8.339.1, 8.339.2, 8.700.1, 8.752.1, 8.826.1, 8.828.1, 8.832.2,
and 8.911.4 of [7].

We define the function Λ on [0, ∞) by the formula

Λ(z) =
Γ(z + 1/2)

Γ(z + 1)
,(2.21)

where Γ is the Euler gamma function.
For any integer n ≥ 1 and l, k = 0, 1, . . . , n− 2, n− 1, we define the entry An,1,+

l,k

of the n× n matrix An,1,+ by the formulae

An,1,+
l,k = − 4l + 3

2(2k + 2l + 3)(2k − 2l − 1)
Λ (k − l) Λ

(
2k + 2l + 1

2

)
(2.22)

×
√

4(l + 1)(2l + 1)

4l + 3

when k ≥ l, and

An,1,+
l,k = 0(2.23)

otherwise (when k < l).
For any integer n ≥ 1 and l, k = 0, 1, . . . , n− 2, n− 1, we define the entry An,1,−

l,k

of the n× n matrix An,1,− by the formulae

An,1,−
l,k = − 4l + 5

2(2k + 2l + 5)(2k − 2l − 1)
Λ (k − l) Λ

(
2k + 2l + 3

2

)
(2.24)

×
√

4(l + 1)(2l + 3)

4l + 5
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when k ≥ l, and

An,1,−
l,k = 0(2.25)

otherwise (when k < l).
For any integer n ≥ 1 and k, l = 0, 1, . . . , n− 2, n− 1, we define the entry Bn,1,+

k,l

of the n× n matrix Bn,1,+ by the formulae

Bn,1,+
k,l = 2

2k + 1

π
Λ (l − k) Λ (l + k + 1)

√
4l + 3

4(l + 1)(2l + 1)
(2.26)

when k ≤ l, and

Bn,1,+
k,l = 0(2.27)

otherwise (when k > l).
For any integer n ≥ 1 and k, l = 0, 1, . . . , n− 2, n− 1, we define the entry Bn,1,−

k,l

of the n× n matrix Bn,1,− by the formulae

Bn,1,−
k,l = 4

k + 1

π
Λ (l − k) Λ (l + k + 2)

√
4l + 5

4(l + 1)(2l + 3)
(2.28)

when k ≤ l, and

Bn,1,−
k,l = 0(2.29)

otherwise (when k > l).
For any integer n ≥ 1, l = 0, 1, . . . , n − 2, n − 1, and k = 0, 1, . . . , n − 1, n, we

define the entry An,2,+
l,k of the n× (n + 1) matrix An,2,+ by the formulae

An,2,+
l,k =

(
4 +

2k (6(l + 1)(2l + 3) − 2(2k − 1)(2k + 1))

(2k + 2l + 3)(2k − 2l − 3)
Λ (k − l − 1)(2.30)

× Λ

(
2k + 2l + 1

2

)) √
4l + 5

8(l + 1)(l + 2)(2l + 1)(2l + 3)

when k ≥ l + 1, and

An,2,+
l,k = 4

√
4l + 5

8(l + 1)(l + 2)(2l + 1)(2l + 3)
(2.31)

otherwise (when k < l + 1).
For any integer n ≥ 1, l = 0, 1, . . . , n − 2, n − 1, and k = 0, 1, . . . , n − 1, n, we

define the entry An,2,−
l,k of the n× (n + 1) matrix An,2,− by the formulae

An,2,−
l,k =

(
4 +

(2k + 1) (6(l + 2)(2l + 3) − 8k(k + 1))

(2k + 2l + 5)(2k − 2l − 3)
Λ (k − l − 1)(2.32)

× Λ

(
2k + 2l + 3

2

)) √
4l + 7

8(l + 1)(l + 2)(2l + 3)(2l + 5)
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when k ≥ l + 1, and

An,2,−
l,k = 4

√
4l + 7

8(l + 1)(l + 2)(2l + 3)(2l + 5)
(2.33)

otherwise (when k < l + 1).
For any integer n ≥ 1, k = 0, 1, . . . , n − 1, n, and l = 0, 1, . . . , n − 2, n − 1, we

define the entry Bn,2,+
k,l of the (n + 1) × n matrix Bn,2,+ by the formulae

Bn,2,+
k,l =

2(l + 1)(2l + 3) − 8k2

π
Λ (l − k + 1) Λ (l + k + 1)(2.34)

×
√

4l + 5

8(l + 1)(l + 2)(2l + 1)(2l + 3)

when k = 0,

Bn,2,+
k,l = 2

2(l + 1)(2l + 3) − 8k2

π
Λ (l − k + 1) Λ (l + k + 1)(2.35)

×
√

4l + 5

8(l + 1)(l + 2)(2l + 1)(2l + 3)

when 0 < k ≤ l + 1, and

Bn,2,+
k,l = 0(2.36)

otherwise (when k > l + 1).
For any integer n ≥ 1, k = 0, 1, . . . , n − 1, n, and l = 0, 1, . . . , n − 2, n − 1, we

define the entry Bn,2,−
k,l of the (n + 1) × n matrix Bn,2,− by the formulae

Bn,2,−
k,l =

4(l + 2)(2l + 3) − 4(2k + 1)2

π
Λ (l − k + 1) Λ (l + k + 2)(2.37)

×
√

4l + 7

8(l + 1)(l + 2)(2l + 3)(2l + 5)

when k ≤ l + 1, and

Bn,2,−
k,l = 0(2.38)

otherwise (when k > l + 1).
The following four lemmas are proven via mechanical but rather tedious manipu-

lations of formulae 7.112.1, 8.339.1, 8.339.2, 8.700.1, 8.752.1, 8.826.1, 8.828.1, 8.832.2,
and 8.911.4 of [7].

The following lemma provides explicit expressions for the matrix Bn,1,+ convert-
ing coefficients in linear combinations of associated Legendre functions of order 1 of
odd degrees into coefficients in linear combinations of even Chebyshev polynomials of
the second kind, scaled by

√
1 − x2, and for the matrix An,1,+ converting the latter

into the former.
Lemma 2.6. Suppose that n ≥ 1 is an integer, q = (q0, q1, . . . , qn−2, qn−1)

T is
a real vector, and f is the function on [−1, 1] defined by the formula

f(x) =

n−1∑
l=0

ql P
1

2l+1(x).(2.39)
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Then,

f(x) =

n−1∑
k=0

uk

√
1 − x2 U2k(x),(2.40)

where u = (u0, u1, . . . , un−2, un−1)
T is the real vector defined by the formula

u = Bn,1,+ q,(2.41)

and Bn,1,+ is defined in (2.21), (2.26), and (2.27). Furthermore,

q = An,1,+ u,(2.42)

where An,1,+ is defined in (2.21), (2.22), and (2.23).
The following lemma provides explicit expressions for the matrix Bn,1,− convert-

ing coefficients in linear combinations of associated Legendre functions of order 1 of
even degrees into coefficients in linear combinations of odd Chebyshev polynomials of
the second kind, scaled by

√
1 − x2, and for the matrix An,1,− converting the latter

into the former.
Lemma 2.7. Suppose that n ≥ 1 is an integer, q = (q0, q1, . . . , qn−2, qn−1)

T is a
real vector, and f is the function on [−1, 1] defined by the formula

f(x) =
n−1∑
l=0

ql P
1

2l+2(x).(2.43)

Then,

f(x) =
n−1∑
k=0

uk

√
1 − x2 U2k+1(x),(2.44)

where u = (u0, u1, . . . , un−2, un−1)
T is the real vector defined by the formula

u = Bn,1,− q,(2.45)

and Bn,1,− is defined in (2.21), (2.28), and (2.29). Furthermore,

q = An,1,− u,(2.46)

where An,1,− is defined in (2.21), (2.24), and (2.25).
The following lemma provides explicit expressions for the matrix Bn,2,+ convert-

ing coefficients in linear combinations of associated Legendre functions of order 2 of
even degrees into coefficients in linear combinations of even Chebyshev polynomials
of the first kind, and for the matrix An,2,+ converting the latter into the former.

Lemma 2.8. Suppose that n ≥ 1 is an integer, p = (p0, p1, . . . , pn−2, pn−1)
T is a

real vector, and f is the function on [−1, 1] defined by the formula

f(x) =
n−1∑
l=0

pl P
2

2l+2(x).(2.47)

Then,

f(x) =

n∑
k=0

ck T2k(x),(2.48)
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where c = (c0, c1, . . . , cn−1, cn)T is the real vector defined by the formula

c = Bn,2,+ p,(2.49)

and Bn,2,+ is defined in (2.21), (2.34), (2.35), and (2.36). Furthermore,

p = An,2,+ c,(2.50)

where An,2,+ is defined in (2.21), (2.30), and (2.31).
The following lemma provides explicit expressions for the matrix Bn,2,− convert-

ing coefficients in linear combinations of associated Legendre functions of order 2 of
odd degrees into coefficients in linear combinations of odd Chebyshev polynomials of
the first kind, and for the matrix An,2,− converting the latter into the former.

Lemma 2.9. Suppose that n ≥ 1 is an integer, p = (p0, p1, . . . , pn−2, pn−1)
T is a

real vector, and f is the function on [−1, 1] defined by the formula

f(x) =
n−1∑
l=0

pl P
2

2l+3(x).(2.51)

Then,

f(x) =

n∑
k=0

ck T2k+1(x),(2.52)

where c = (c0, c1, . . . , cn−1, cn)T is the real vector defined by the formula

c = Bn,2,− p,(2.53)

and Bn,2,− is defined in (2.21), (2.37), and (2.38). Furthermore,

p = An,2,− c,(2.54)

where An,2,− is defined in (2.21), (2.32), and (2.33).
Observation 2.10. Suppose that n ≥ 1 is an integer. Then, there exists an

algorithm which uses O(n log(n/ε)) operations to apply to an arbitrary vector any
of the matrices An,1,+, Bn,1,+, An,1,−, Bn,1,−, An,2,+, Bn,2,+, An,2,−, and Bn,2,−

defined in (2.21)–(2.38), where ε is the precision of computations (see [3]).

2.4. Semiseparable matrices. For any integer n > 0, a semiseparable real
n× n matrix S is a matrix whose entry Sj,k is given by the formulae

Sj,k = aj bk(2.55)

when j ≤ k, and

Sj,k = ak bj(2.56)

when j > k, where a = (a0, a1, . . . , an−2, an−1)
T and b = (b0, b1, . . . , bn−2, bn−1)

T

are real vectors.
Matrices of the form

G = D + S,(2.57)
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where D is a diagonal real matrix and S is a semiseparable real matrix, will be
encountered repeatedly throughout this paper. The matrix U of eigenvectors of the
matrix G in (2.57) will be particularly important; U is orthogonal and diagonalizes
G, so that

UT GU = Λ,(2.58)

where Λ is a diagonal real matrix.

The principal numerical tool of this paper is the following observation, made in [8]
and [4].

Observation 2.11. The matrices U and UT in (2.58) can be applied to an arbitrary
vector of length N for a cost of O(N(logN) log(1/ε)) operations, where ε is the
precision of computations. More precisely, there exists a constant C independent of
N , of ε, and of the particular matrix G in (2.58) such that the matrices U and UT

can be applied for a cost of at most C N(logN) log(1/ε) operations.

Remark 2.12. Strictly speaking, only the numerical apparatus behind Observa-
tion 2.11 is constructed in [4]. However, the observation itself is stated explicitly in a
very similar environment in [8]. In our implementation, we used a minor modification
of the apparatus in [4], to be reported at a later date.

3. Analytical apparatus. In this section, we construct the principal analytical
tools used in this paper.

In section 3.1, we observe that when the function P
m

l is represented as a lin-

ear combination of functions P
1

j or P
2

j (depending on whether m is even or odd),
the Sturm–Liouville problem (2.9) becomes an eigenvector problem for the matrix
G in (2.57). Thus, according to Observation 2.11, there exists an algorithm that
uses O (N(logN) log(1/ε)) operations to apply the matrices U and UT in (2.58) to
arbitrary vectors of length N , where ε is the precision of computations.

In section 3.2, we observe that the problem of evaluating expansions of the
form (1.12) can be reduced to the problem of evaluating expansions of the forms (1.10)
and (1.11), via the matrices U and UT in (2.58). These matrices can be applied to
arbitrary vectors efficiently, due to Observation 2.11.

3.1. Associated Legendre differential equations in terms of associated
Legendre functions of low orders. For any even integers n and m with 2 ≤ m ≤ n,
and for j, k = 0, 1, . . . , n/2 − 2, n/2 − 1, we define the entry Gn,m

j,k of the n/2 × n/2
matrix Gn,m by the formula

Gn,m
j,k =

∫ 1

−1

P
2

2j+2(x) Lm

(
P

2

2k+2

)
(x) dx,(3.1)

where the differential operator Lm is defined in (2.8).

For any odd integer n and even integer m with 2 ≤ m < n, and for j, k =
0, 1, . . . , (n−1)/2−2, (n−1)/2−1, we define the entry Gn,m

j,k of the (n−1)/2×(n−1)/2
matrix Gn,m by the formula

Gn,m
j,k =

∫ 1

−1

P
2

2j+3(x) Lm

(
P

2

2k+3

)
(x) dx,(3.2)

where the differential operator Lm is defined in (2.8).
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For any even integer n and odd integer m with 1 ≤ m < n, and for j, k =
0, 1, . . . , n/2− 2, n/2− 1, we define the entry Gn,m

j,k of the n/2× n/2 matrix Gn,m by
the formula

Gn,m
j,k =

∫ 1

−1

P
1

2j+2(x) Lm

(
P

1

2k+2

)
(x) dx,(3.3)

where the differential operator Lm is defined in (2.8).
For any odd integers n and m with 1 ≤ m ≤ n, and for j, k = 0, 1, . . . , (n+1)/2−

2, (n + 1)/2 − 1, we define the entry Gn,m
j,k of the (n + 1)/2 × (n + 1)/2 matrix Gn,m

by the formula

Gn,m
j,k =

∫ 1

−1

P
1

2j+1(x) Lm

(
P

1

2k+1

)
(x) dx,(3.4)

where the differential operator Lm is defined in (2.8).
The following lemma states that the coefficients in the expansion of the function

P
m

l in terms of either the functions P
1

j or the functions P
2

j (depending on whether m
is even or odd) are the entries in an eigenvector of the matrix Gn,m.

Lemma 3.1. Suppose that m and n are integers such that 1 ≤ m ≤ n.
Then, when m and n are both even, l(l + 1) is an eigenvalue of the matrix

Gn,m defined in (3.1), for any even integer l with m ≤ l ≤ n, and the coordinates
ξ0, ξ1, . . . , ξn/2−2, ξn/2−1 of the corresponding eigenvector are the coefficients in the
expansion

P
m

l (x) =

n/2−1∑
k=0

ξk P
2

2k+2(x).(3.5)

When m is even and n is odd, l(l+1) is an eigenvalue of the matrix Gn,m defined
in (3.2), for any odd integer l with m < l ≤ n, and the coordinates ξ0, ξ1, . . . , ξ(n−1)/2−2,
ξ(n−1)/2−1 of the corresponding eigenvector are the coefficients in the expansion

P
m

l (x) =

(n−1)/2−1∑
k=0

ξk P
2

2k+3(x).(3.6)

When m is odd and n is even, l(l+1) is an eigenvalue of the matrix Gn,m defined
in (3.3), for any even integer l with m < l ≤ n, and the coordinates ξ0, ξ1, . . . , ξn/2−2,
ξn/2−1 of the corresponding eigenvector are the coefficients in the expansion

P
m

l (x) =

n/2−1∑
k=0

ξk P
1

2k+2(x).(3.7)

When m and n are both odd, l(l + 1) is an eigenvalue of the matrix Gn,m defined
in (3.4), for any odd integer l with m ≤ l ≤ n, and the coordinates ξ0, ξ1, . . . , ξ(n+1)/2−2,
ξ(n+1)/2−1 of the corresponding eigenvector are the coefficients in the expansion

P
m

l (x) =

(n+1)/2−1∑
k=0

ξk P
1

2k+1(x).(3.8)
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Proof. We outline the proof in the case that m and n are both even; the proofs
in the other three cases are similar.

Substituting (2.12) into (2.9) and using (1.2) and (1.5), we obtain from (3.1)
that the numbers ξ0, ξ1, . . . , ξl/2−2, ξl/2−1 from (2.12), along with the numbers ξl/2 =
0, ξl/2+1 = 0, . . . , ξn/2−2 = 0, ξn/2−1 = 0 when l < n, are the coordinates of the
eigenvector of Gn,m with corresponding eigenvalue l(l + 1), giving (3.5).

The following lemma states that Gn,m is the sum of a diagonal matrix and a
semiseparable matrix and provides expressions for the entries of Gn,m.

Lemma 3.2. Suppose that m and n are integers such that 1 ≤ m ≤ n.
Then, the matrix Gn,m defined in (3.1)–(3.4) has the form

Gn,m = D + S,(3.9)

where D is a diagonal matrix and S is a semiseparable matrix.
When m and n are both even, D is the diagonal n/2×n/2 matrix with the diagonal

entries D0,0, D1,1, . . . , Dn/2−2,n/2−2, Dn/2−1,n/2−1 defined by the formula

Dk,k = (2k + 2)(2k + 3),(3.10)

and S is the semiseparable n/2×n/2 matrix with the entry Sj,k defined by the formulae

Sj,k = aj bk(3.11)

when j ≤ k, and

Sj,k = ak bj(3.12)

otherwise (when j > k), where the numbers a0, a1, . . . , an/2−2, an/2−1 and b0, b1, . . . ,
bn/2−2, bn/2−1 are defined by the formulae

ak =

√
(2k + 1)(2k + 2)(2k + 3)(2k + 4)(4k + 5)

8 · 15
,(3.13)

bk = (m2 − 4)

√
15(4k + 5)

2(2k + 1)(2k + 2)(2k + 3)(2k + 4)
.(3.14)

When m is even and n is odd, D is the diagonal (n − 1)/2 × (n − 1)/2 matrix
with the diagonal entries D0,0, D1,1, . . . , D(n−1)/2−2,(n−1)/2−2, D(n−1)/2−1,(n−1)/2−1

defined by the formula

Dk,k = (2k + 3)(2k + 4),(3.15)

and S is the semiseparable (n− 1)/2× (n− 1)/2 matrix with the entry Sj,k defined by
the formulae

Sj,k = aj bk(3.16)

when j ≤ k, and

Sj,k = ak bj(3.17)
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otherwise (when j > k), where the numbers a0, a1, . . . , a(n−1)/2−2, a(n−1)/2−1 and
b0, b1, . . . , b(n−1)/2−2, b(n−1)/2−1 are defined by the formulae

ak =

√
(2k + 2)(2k + 3)(2k + 4)(2k + 5)(4k + 7)

14 · 15
,(3.18)

bk = (m2 − 4)

√
7 · 15(4k + 7)

8(2k + 2)(2k + 3)(2k + 4)(2k + 5)
.(3.19)

When m is odd and n is even, D is the diagonal n/2×n/2 matrix with the diagonal
entries D0,0, D1,1, . . . , Dn/2−2,n/2−2, Dn/2−1,n/2−1 defined by the formula

Dk,k = (2k + 2)(2k + 3),(3.20)

and S is the semiseparable n/2×n/2 matrix with the entry Sj,k defined by the formulae

Sj,k = aj bk(3.21)

when j ≤ k, and

Sj,k = ak bj(3.22)

otherwise (when j > k), where the numbers a0, a1, . . . , an/2−2, an/2−1 and b0, b1, . . . ,
bn/2−2, bn/2−1 are defined by the formulae

ak =

√
(2k + 2)(2k + 3)(4k + 5)

30
,(3.23)

bk = (m2 − 1)

√
15(4k + 5)

2(2k + 2)(2k + 3)
.(3.24)

When m and n are both odd, D is the diagonal (n + 1)/2 × (n + 1)/2 matrix
with the diagonal entries D0,0, D1,1, . . . , D(n+1)/2−2,(n+1)/2−2, D(n+1)/2−1,(n+1)/2−1

defined by the formula

Dk,k = (2k + 1)(2k + 2),(3.25)

and S is the semiseparable (n+1)/2× (n+1)/2 matrix with the entry Sj,k defined by
the formulae

Sj,k = aj bk(3.26)

when j ≤ k, and

Sj,k = ak bj(3.27)

otherwise (when j > k), where the numbers a0, a1, . . . , a(n+1)/2−2, a(n+1)/2−1 and
b0, b1, . . . , b(n+1)/2−2, b(n+1)/2−1 are defined by the formulae

ak =

√
(2k + 1)(2k + 2)(4k + 3)

6
,(3.28)
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bk = (m2 − 1)

√
3(4k + 3)

2(2k + 1)(2k + 2)
.(3.29)

Proof. We outline the proof in the case that m and n are both even; the proofs
in the other three cases are similar.

We define the entry Dj,k of the n/2 × n/2 matrix D by the formula

Dj,k =

∫ 1

−1

P
2

2j+2(x) L2

(
P

2

2k+2

)
(x) dx,(3.30)

where the differential operator L2 is defined in (2.8), and we define the entry Sj,k of
the n/2 × n/2 matrix S by the formula

Sj,k =

∫ 1

−1

P
2

2j+2(x)
m2 − 4

1 − x2
P

2

2k+2(x) dx.(3.31)

We now show that Gn,m = D + S, D is diagonal, and S is semiseparable.
Combining (3.1), (3.30), (3.31), and (2.8), we obtain the decomposition (3.9).
Substituting (2.9) into (3.30), and using (1.2) and (1.5), we observe that the

matrix D is diagonal with the diagonal entries given by (3.10).
In order to obtain the formulae (3.11)–(3.14), we define the entry Mj,k of the

infinite-dimensional matrix M , for j, k = 0, 1, 2, . . . , by the formula

Mj,k =

∫ 1

−1

P
2

2j+2(x)
m2 − 4

1 − x2
P

2

2k+2(x) dx(3.32)

and observe that the entry (M−1)j,k of the inverse M−1 of the matrix M is given by
the formula

(M−1)j,k =

∫ 1

−1

P
2

2j+2(x)
1 − x2

m2 − 4
P

2

2k+2(x) dx,(3.33)

since M represents the operator acting on functions on [−1, 1] by multiplication by
the factor

m2 − 4

1 − x2
,(3.34)

whereas M−1 represents the operator acting on functions on [−1, 1] by multiplication
by the inverse factor

1 − x2

m2 − 4
.(3.35)

Using (1.2), (1.5), (2.10), and (3.33), we observe that M−1 is tridiagonal. So, M
is the inverse of a tridiagonal matrix, and, as such, M is semiseparable (see, for
example, [6]). But, for j, k = 0, 1, . . . , n/2 − 2, n/2 − 1, (3.31) and (3.32) show that
Sj,k = Mj,k, so that S is also semiseparable.

Integrating by parts a few times, while using (1.2), (1.5), and (2.7), together with
the definition (3.31), yields explicit expressions for the uppermost entries S0,0, S0,1, . . . ,
S0,n/2−2, S0,n/2−1 of S. Combining (1.2), (1.5), (2.11), and (3.31) yields explicit ex-
pressions for the diagonal entries S0,0, S1,1, . . . , Sn/2−2,n/2−2, Sn/2−1,n/2−1 of S. Com-
bining all of these explicit expressions with the fact that S is semiseparable, we obtain
the formulae (3.11)–(3.14).
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3.2. Associated Legendre expansions of arbitrary orders and associated
Legendre expansions of low orders. Lemmas 3.3, 3.4, 3.5, and 3.6 of this section
follow immediately from Lemma 3.1.

Lemma 3.3 states that the matrix of eigenvectors of the matrix Gn,m in (3.9)
converts the coefficients in the expansion of a function f in terms of the functions
P

m

m, P
m

m+2, . . . , P
m

n−2, P
m

n into the coefficients in the expansion of the function f in

terms of the functions P
2

2, P
2

4, . . . , P
2

n−2, P
2

n. Lemma 3.3 states, moreover, that the
adjoint of the matrix of eigenvectors converts the latter coefficients into the former
coefficients.

Lemma 3.3. Suppose that n and m are even integers such that 2 ≤ m ≤ n,
pm = (pm0 , pm1 , . . . , pmn/2−2, p

m
n/2−1)

T is a real column vector such that pm(n−m)/2+1 =
0, pm(n−m)/2+2 = 0, . . . , pmn/2−2 = 0, pmn/2−1 = 0, and f is the function defined on

[−1, 1] by the formula

f(x) =

(n−m)/2∑
j=0

pmj P
m

2j+m(x).(3.36)

Then,

f(x) =

n/2−1∑
l=0

p2
l P

2

2l+2(x),(3.37)

where p2 = (p2
0, p

2
1, . . . , p

2
n/2−2, p

2
n/2−1)

T is the real vector defined by the formula

p2 = U pm,(3.38)

and U is an n/2× n/2 matrix of eigenvectors of the symmetric matrix Gn,m in (3.9)
with

P
m

2j+m(x) =

n/2−1∑
l=0

Ul,j P
2

2l+2(x)(3.39)

for j = 0, 1, . . . , (n−m)/2 − 1, (n−m)/2. Moreover,

pm = UT p2.(3.40)

Lemmas 3.4, 3.5, and 3.6 are analogues of Lemma 3.3 for different conditions on
m and n.

Lemma 3.4. Suppose that n and m are integers such that m is even, n is odd,
2 ≤ m < n, pm = (pm0 , pm1 , . . . , pm(n−5)/2, p

m
(n−3)/2)

T is a real column vector such that
pm(n−m+1)/2 = 0, pm(n−m+3)/2 = 0, . . . , pm(n−5)/2 = 0, pm(n−3)/2 = 0, and f is the function

defined on [−1, 1] by the formula

f(x) =

(n−m−1)/2∑
j=0

pmj P
m

2j+m+1(x).(3.41)

Then,

f(x) =

(n−3)/2∑
l=0

p2
l P

2

2l+3(x),(3.42)
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where p2 = (p2
0, p

2
1, . . . , p

2
(n−5)/2, p

2
(n−3)/2)

T is the real vector defined by the formula

p2 = U pm,(3.43)

and U is an (n − 1)/2 × (n − 1)/2 matrix of eigenvectors of the symmetric matrix
Gn,m in (3.9) with

P
m

2j+m+1(x) =

(n−3)/2∑
l=0

Ul,j P
2

2l+3(x)(3.44)

for j = 0, 1, . . . , (n−m− 3)/2, (n−m− 1)/2. Moreover,

pm = UT p2.(3.45)

Lemma 3.5. Suppose that n and m are integers such that m is odd, n is even,
1 ≤ m < n, pm = (pm0 , pm1 , . . . , pmn/2−2, p

m
n/2−1)

T is a real column vector such that
pm(n−m+1)/2 = 0, pm(n−m+3)/2 = 0, . . . , pmn/2−2 = 0, pmn/2−1 = 0, and f is the function

defined on [−1, 1] by the formula

f(x) =

(n−m−1)/2∑
j=0

pmj P
m

2j+m+1(x).(3.46)

Then,

f(x) =

n/2−1∑
l=0

p1
l P

1

2l+2(x),(3.47)

where p1 = (p1
0, p

1
1, . . . , p

1
n/2−2, p

1
n/2−1)

T is the real vector defined by the formula

p1 = U pm,(3.48)

and U is an n/2× n/2 matrix of eigenvectors of the symmetric matrix Gn,m in (3.9)
with

P
m

2j+m+1(x) =

n/2−1∑
l=0

Ul,j P
1

2l+2(x)(3.49)

for j = 0, 1, . . . , (n−m− 3)/2, (n−m− 1)/2. Moreover,

pm = UT p1.(3.50)

Lemma 3.6. Suppose that n and m are odd integers such that 1 ≤ m ≤ n,
pm = (pm0 , pm1 , . . . , pm(n−3)/2, p

m
(n−1)/2)

T is a real column vector such that pm(n−m)/2+1 =
0, pm(n−m)/2+2 = 0, . . . , pm(n−3)/2 = 0, pm(n−1)/2 = 0, and f is the function defined on

[−1, 1] by the formula

f(x) =

(n−m)/2∑
j=0

pmj P
m

2j+m(x).(3.51)
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Then,

f(x) =

(n−1)/2∑
l=0

p1
l P

1

2l+1(x),(3.52)

where p1 = (p1
0, p

1
1, . . . , p

1
(n−3)/2, p

1
(n−1)/2)

T is the real vector defined by the formula

p1 = U pm,(3.53)

and U is an (n + 1)/2 × (n + 1)/2 matrix of eigenvectors of the symmetric matrix
Gn,m in (3.9) with

P
m

2j+m(x) =

(n−1)/2∑
l=0

Ul,j P
1

2l+1(x)(3.54)

for j = 0, 1, . . . , (n−m)/2 − 1, (n−m)/2. Moreover,

pm = UT p1.(3.55)

4. Informal description of the algorithm. In this section, we outline a “fast”
algorithm for the conversion of the values f0, f1, . . . , fN−1, fN of the function f
tabulated at the nodes x0, x1, . . . , xN−1, xN , defined by the formula

xk = cos

(
π(k + 1/2)

N + 1

)
,(4.1)

into the coefficients p0, p1, . . . , pN−m−1, pN−m in the expansion

f(x) =

N−m∑
l=0

pl P
m

l+m(x).(4.2)

(The inverse procedure of converting the coefficients p0, p1, . . . , pN−m−1, pN−m into
the values f0, f1, . . . , fN−1, fN is quite similar, so we omit its description.)

The procedure consists of four steps, described briefly below. Since the procedure
when m is odd is virtually the same as when m is even, we describe the procedure
only for the case that m is even. For definitiveness, we assume also that N is even.

Step 1. We separate f into its even and odd parts f+ and f−, defined by the
formulae

f+(x) =
f(x) + f(−x)√

2
,(4.3)

f−(x) =
f(x) − f(−x)√

2
.(4.4)

All subsequent processing is performed separately for f+ and f−. Since the procedures
for f+ and f− are virtually identical, we describe only the procedure for the even part
f+.

Step 2. Using the fast Fourier transform as in Observation 2.5, we convert the
values f+

0 , f+
1 , . . . , f+

N−1, f
+
N of the function f+, defined in (4.3), at the points x0, x1,
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. . . , xN−1, xN , defined in (4.1), into the coefficients c0, c1, . . . , cN/2−1, cN/2 in the
expansion

f+(x) =

N/2∑
k=0

ck T2k(x).(4.5)

Step 3. Using Lemma 2.8 and Observation 2.10, we convert the coefficients
c0, c1, . . . , cN/2−1, cN/2 in the expansion (4.5) into the coefficients p2

0, p
2
1, . . . , p

2
N/2−2,

p2
N/2−1 in the expansion

f+(x) =

N/2−1∑
l=0

p2
l P

2

2l+2(x).(4.6)

Step 4. Using Lemmas 3.2 and 3.3 and Observation 2.11, we convert the coeffi-
cients p2

0, p
2
1, . . . , p2

N/2−2, p
2
N/2−1 in the expansion (4.6) into the coefficients pm0 , pm1 ,

. . . , pm(N−m)/2−1, p
m
(N−m)/2 in the expansion

f+(x) =

(N−m)/2∑
l=0

pml P
m

2l+m(x).(4.7)

Remark 4.1. Clearly, Step 1 takes O(N) operations. As per Observation 2.5, Step
2 takes O(N logN) operations. As per Observation 2.10, Step 3 takes O(N log(N/ε))
operations, where ε is the precision of computations. As per Observation 2.11, Step 4
takes O(N(logN) log(1/ε)) operations, where ε is the precision of computations used
in this step. All together, Steps 1–4 take O(N(logN) log(1/ε)) operations.

Remark 4.2. To handle f− when m is even, we substitute Lemma 2.9 for
Lemma 2.8 in Step 3 and Lemma 3.4 for Lemma 3.3 in Step 4. For f− when m
is even, we find that p2

N/2−1 = 0 and cN/2 = 0, since, when m is even, f− is a linear

combination of only N/2 − 1 functions P
2

3, P
2

5, . . . , P
2

N−3, P
2

N−1 (or, equivalently, of
the N/2 Chebyshev polynomials of the first kind T1, T3, . . . , TN−3, TN−1).

To handle f+ when m is odd, we substitute Lemma 2.6 for Lemma 2.8 in Step 3
and Lemma 3.6 for Lemma 3.3 in Step 4.

To handle f− when m is odd, we substitute Lemma 2.7 for Lemma 2.8 in Step 3
and Lemma 3.5 for Lemma 3.3 in Step 4.

When computing the coefficients (2.1) in the spherical harmonic expansion (1.6),
we tabulate the function f on [−1, 1] at the same N+1 sampling locations x0, x1, . . . ,
xN−1, xN when m is odd as when m is even, even though when m is odd, f is

a linear combination of only N functions P
1

1, P
1

2, . . . , P
1

N−1, P
1

N (or, equivalently,

of the N Chebyshev polynomials of the second kind
√

1 − x2 U0,
√

1 − x2 U1, . . . ,√
1 − x2 UN−2,

√
1 − x2 UN−1, which are scaled by

√
1 − x2).

5. Detailed description of the algorithm. In this section, we describe in
detail the algorithm described informally in section 4.

Precomputations.

Comment [Compute all the data that Steps 3 and 4 require that do not depend
on f .]
Compute all the data that Step 3 requires to apply fast the matrix AN/2,2,+

from Lemma 2.8 (i.e., “compress” the matrix AN/2,2,+).
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Compute all the data that Step 4 requires to apply fast the adjoint of the
matrix U from Lemmas 3.2 and 3.3 (i.e., “compress” the matrix UT).

Step 1.

Comment [Convert the values f0, f1, . . . , fN−1, fN into the values f+
0 , f+

1 , . . . ,
f+
N−1, f

+
N .]

do n = 0, . . . , N
Set f+

n = (fn + fN−n)/
√

2.
enddo

Step 2.

Comment [Convert the values f+
0 , f+

1 , . . . , f+
N−1, f

+
N into the coefficients c0, c1, . . . ,

cN/2−1, cN/2 of the Chebyshev polynomials T0, T2, . . . , TN−2, TN .]
Use the discrete cosine transform (see, for example, [14]) to convert the values
f+
0 , f+

1 , . . . , f+
N−1, f

+
N into the coefficients c0, c1, . . . , cN/2−1, cN/2.

Step 3.

Comment [Convert the coefficients c0, c1, . . . , cN/2−1, cN/2 of the Chebyshev poly-
nomials T0, T2, . . . , TN−2, TN into the coefficients p2

0, p
2
1, . . . , p

2
N/2−2, p

2
N/2−1

of the associated Legendre functions P
2

2, P
2

4, . . . , P
2

N−2, P
2

N .]

Use Observation 2.10 to apply the matrix AN/2,2,+ from Lemma 2.8 to the
vector c = (c0, c1, . . . , cN/2−1, cN/2)

T, in order to obtain the vector p2 =
(p2

0, p
2
1, . . . , p

2
N/2−2, p

2
N/2−1)

T.

Step 4.

Comment [Convert the coefficients p2
0, p

2
1, . . . , p

2
N/2−2, p

2
N/2−1 of the associated

Legendre functions P
2

2, P
2

4, . . . , P
2

N−2, P
2

N of order 2 into the coefficients
pm0 , pm1 , . . . , pm(N−m)/2−1, pm(N−m)/2 of the associated Legendre functions

P
m

m, P
m

m+2, . . . , P
m

N−2, P
m

N .]

Use Observation 2.11 to apply the adjoint of the matrix U from Lemmas 3.2
and 3.3 to the vector p2 = (p2

0, p
2
1, . . . , p

2
N/2−2, p

2
N/2−1)

T, in order to obtain

the vector pm = (pm0 , pm1 , . . . , pmN/2−2, p
m
N/2−1)

T.

Comment [Only the first (N−m)/2+1 entries of pm interest us; the other entries
vanish: pm(N−m)/2+1 = 0, pm(N−m)/2+2 = 0, . . . , pmN/2−2 = 0, pmN/2−1 = 0.]

6. Numerical results. The algorithms described in this paper have been im-
plemented in Fortran. Tables 1–8 report the results of applying the algorithm to
functions f defined on [−1, 1] by the formulae

f(x) =

(N−m)/2∑
l=0

εl P
m

2l+m(x)(6.1)

when m is even and degrees are even,

f(x) =

(N−m−2)/2∑
l=0

εl P
m

2l+m+1(x)(6.2)

when m is even and degrees are odd,

f(x) =

(N−m−1)/2∑
l=0

εl P
m

2l+m+1(x)(6.3)
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Table 1

Times in seconds and errors for m = N+6
2

, even degrees, reconstruction.

N m
“Fast” trans-

formation
Third of applying
an N

2
×N

2
matrix

Precomp-
utation

Relative
r.m.s. error

1024 515 .20E−02 .91E−03 .20E+01 .64E−07
2048 1027 .52E−02 .36E−02 .80E+01 .58E−07
4096 2051 .23E−01 .15E−01 .33E+02 .17E−06
8192 4099 .48E−01 .58E−01 .16E+03 .39E−06
16384 8195 .11E+00 .23E+00 .69E+03 .72E−06
32768 16387 .24E+00 .96E+00 .36E+04 .14E−05
65536 32771 .51E+00 (.37E+01) .14E+05 .52E−06
131072 65539 .11E+01 (.15E+02) .63E+05 .70E−05

Table 2

Times in seconds and errors for m = N+6
2

, even degrees, decomposition.

N m
“Fast” trans-

formation
Third of applying
an N

2
×N

2
matrix

Precomp-
utation

Relative
r.m.s. error

1024 515 .19E−02 .91E−03 .30E+01 .73E−08
2048 1027 .49E−02 .36E−02 .80E+01 .70E−08
4096 2051 .22E−01 .15E−01 .32E+02 .76E−08
8192 4099 .47E−01 .58E−01 .16E+03 .11E−07
16384 8195 .11E+00 .23E+00 .68E+03 .13E−07
32768 16387 .23E+00 .96E+00 .35E+04 .15E−07
65536 32771 .50E+00 (.37E+01) .14E+05 .20E−07
131072 65539 .12E+01 (.15E+02) .62E+05 .35E−07

Table 3

Times in seconds and errors for m = N−4
2

, even degrees, reconstruction.

N m
“Fast” trans-

formation
Third of applying
an N

2
×N

2
matrix

Precomp-
utation

Relative
r.m.s. error

1024 510 .20E−02 .91E−03 .20E+01 .77E−07
2048 1022 .53E−02 .36E−02 .90E+01 .72E−07
4096 2046 .23E−01 .15E−01 .38E+02 .65E−07
8192 4094 .49E−01 .58E−01 .17E+03 .15E−06
16384 8190 .11E+00 .23E+00 .78E+03 .41E−06
32768 16382 .24E+00 .96E+00 .34E+04 .54E−06
65536 32766 .52E+00 (.37E+01) .15E+05 .31E−06
131072 65534 .11E+01 (.15E+02) .64E+05 .41E−05

Table 4

Times in seconds and errors for m = N−4
2

, even degrees, decomposition.

N m
“Fast” trans-

formation
Third of applying
an N

2
×N

2
matrix

Precomp-
utation

Relative
r.m.s. error

1024 510 .19E−02 .91E−03 .20E+01 .37E−08
2048 1022 .51E−02 .36E−02 .90E+01 .79E−08
4096 2046 .22E−01 .15E−01 .38E+02 .95E−08
8192 4094 .48E−01 .58E−01 .16E+03 .11E−07
16384 8190 .11E+00 .23E+00 .77E+03 .16E−07
32768 16382 .24E+00 .96E+00 .33E+04 .15E−07
65536 32766 .51E+00 (.37E+01) .16E+05 .17E−07
131072 65534 .11E+01 (.15E+02) .62E+05 .21E−07
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Table 5

Times in seconds and errors for m = N−32
32

, odd degrees, reconstruction.

N m
“Fast” trans-

formation
Third of applying
an N

2
×N

2
matrix

Precomp-
utation

Relative
r.m.s. error

1024 31 .16E−02 .91E−03 .20E+01 .86E−08
2048 63 .43E−02 .36E−02 .70E+01 .20E−07
4096 127 .20E−01 .15E−01 .28E+02 .16E−06
8192 255 .43E−01 .58E−01 .11E+03 .41E−06
16384 511 .94E−01 .23E+00 .56E+03 .60E−06
32768 1023 .21E+00 .96E+00 .26E+04 .10E−05
65536 2047 .46E+00 (.37E+01) .14E+05 .14E−05
131072 4095 .10E+01 (.15E+02) .47E+05 .14E−05

Table 6

Times in seconds and errors for m = N−32
32

, odd degrees, decomposition.

N m
“Fast” trans-

formation
Third of applying
an N

2
×N

2
matrix

Precomp-
utation

Relative
r.m.s. error

1024 31 .15E−02 .91E−03 .20E+01 .71E−08
2048 63 .41E−02 .36E−02 .70E+01 .59E−08
4096 127 .20E−01 .15E−01 .27E+02 .82E−08
8192 255 .42E−01 .58E−01 .12E+03 .76E−08
16384 511 .92E−01 .23E+00 .55E+03 .12E−07
32768 1023 .21E+00 .96E+00 .25E+04 .13E−07
65536 2047 .45E+00 (.37E+01) .11E+05 .11E−07
131072 4095 .98E+00 (.15E+02) .46E+05 .20E−07

Table 7

Times in seconds and errors for m = 15N
16

, odd degrees, reconstruction.

N m
“Fast” trans-

formation
Third of applying
an N

2
×N

2
matrix

Precomp-
utation

Relative
r.m.s. error

1024 960 .21E−02 .91E−03 .30E+01 .12E−07
2048 1920 .55E−02 .36E−02 .11E+02 .20E−07
4096 3840 .23E−01 .15E−01 .39E+02 .48E−07
8192 7680 .49E−01 .58E−01 .16E+03 .14E−06
16384 15360 .11E+00 .23E+00 .83E+03 .15E−06
32768 30720 .24E+00 .96E+00 .36E+04 .23E−06
65536 61440 .53E+00 (.37E+01) .21E+05 .12E−05
131072 122880 .11E+01 (.15E+02) .62E+05 .15E−05

Table 8

Times in seconds and errors for m = 15N
16

, odd degrees, decomposition.

N m
“Fast” trans-

formation
Third of applying
an N

2
×N

2
matrix

Precomp-
utation

Relative
r.m.s. error

1024 960 .20E−02 .91E−03 .30E+01 .48E−08
2048 1920 .52E−02 .36E−02 .10E+02 .74E−08
4096 3840 .23E−01 .15E−01 .38E+02 .10E−07
8192 7680 .49E−01 .58E−01 .16E+03 .11E−07
16384 15360 .11E+00 .23E+00 .81E+03 .13E−07
32768 30720 .24E+00 .96E+00 .35E+04 .18E−07
65536 61440 .51E+00 (.37E+01) .16E+05 .16E−07
131072 122880 .11E+01 (.15E+02) .60E+05 .27E−07
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when m is odd and degrees are even, and

f(x) =

(N−m−1)/2∑
l=0

εl P
m

2l+m(x)(6.4)

when m is odd and degrees are odd; ε0, ε1, ε2, . . . are randomly generated numbers in
the interval [−1, 1]. The decomposition algorithm computes from the sample values
of f the coefficients in the representation of f as a linear combination of the functions
P

m

m, P
m

m+1, . . . , P
m

N−1, P
m

N ; the reconstruction algorithm computes the sample values
of f from the coefficients in the representation of f as a linear combination of the
functions P

m

m, P
m

m+1, . . . , P
m

N−1, P
m

N . The CPU times are in seconds. The errors are
relative root-mean-square errors.

The columns labeled “ ‘fast’ transformation” list the times taken by the algorithm
to evaluate one sum of the form (6.1), (6.2), (6.3), or (6.4).

The columns labeled “third of applying an N
2 × N

2 matrix” list the times, divided

by 3, taken to apply an N
2 × N

2 matrix once to a vector of length N
2 . These times scale

quadratically with N ; the figures in parentheses are estimates used when the memory
required by direct calculations would be excessive.

Remark 6.1. The columns labeled “third of applying an N
2 × N

2 matrix” give
some indication of how much time current implementations of the decompositions
and reconstructions take to run; these times are believed to be reasonable estimates
of how a standard package like Spherepack (see [2], [18]) would perform, using the
“semi-naive” algorithm described in [10], for example. Clearly, for sufficiently small N ,
the “slow” implementation would actually run faster than the “fast” implementation.

The code was compiled with the Lahey–Fujitsu compiler, with optimization flag
--o2, and run on a 2.8 GHz Intel Pentium Xeon microprocessor with 512 KB of L2
cache.

No effort was made to optimize the precomputations. To simplify the imple-
mentation, precomputations that take O(N2) operations were used, even though the
techniques described in [4] lead naturally to precomputations that would take only
O(N logN) operations. The precomputations were run to yield approximately 6 dig-
its of accuracy, running all computations (including the precomputations) in double
precision arithmetic.

Observation 6.2. Asymptotically, the algorithm should require a number of oper-
ations proportional to N(logN) log(1/ε) to evaluate one sum of the form (6.1), (6.2),
(6.3), or (6.4), where ε ≈ 10−6. The times in the columns labeled “ ‘fast’ transfor-
mation” appear to be consistent with this estimate. The algorithm appears to break
even with standard matrix multiplication methods for computing spherical harmonic
expansions between N = 4096 and N = 8192; however, no serious effort has been
made to optimize our implementation.

7. Generalizations. The algorithm of this paper admits a number of general-
izations and extensions. The following list is not intended to be exhaustive; subjects
in it are under investigation, and these investigations will be reported at a later date.

1. Different discretizations of S2. Throughout this paper, we have assumed
that the meridians on S2 are discretized in an equispaced manner, i.e., that the
points θ0, θ1, . . . , θN−1, θN subdivide the interval [0, π] into equal subintervals. This
limitation is easily removed via techniques described in [11], [19], and [5]; however, to
maintain numerical stability, the nodes have to satisfy certain quite restrictive criteria.
One important collection of nodes that does in fact lead to stable algorithms is given
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by the formula

θk = cos−1(xk),(7.1)

where x0, x1, . . . , xN−1, xN are Gaussian nodes on the interval [−1, 1] (see, for ex-
ample, [2]).

Furthermore, the nodes ϕ0, ϕ1, . . . , ϕ2N−1, ϕ2N in the discretizations of the par-
allels on S2 do not have to be equispaced, provided some form of nonequispaced
fast Fourier transform is used; again, numerical stability requires that ϕ0, ϕ1, . . . ,
ϕ2N−1, ϕ2N be fairly close to being equispaced.

2. Associated Laguerre functions. Associated Laguerre functions are defined
on the entire half-line [0, ∞), but are very small outside of a finite interval. The
Sturm–Liouville problem that generates the associated Laguerre functions becomes
an eigenvector problem for the sum of a diagonal matrix and a semiseparable matrix
when discretized using associated Laguerre functions of low orders (very much like
the associated Legendre functions).

3. Prolate spheroidal wave functions. The Sturm–Liouville problem that gen-
erates the prolate spheroidal wave functions becomes an eigenvector problem for a
tridiagonal matrix when discretized using Legendre polynomials.

4. Associated prolate spheroidal wave functions. The Sturm–Liouville problem
that generates the associated prolate spheroidal wave functions becomes an eigenvec-
tor problem for the sum of a tridiagonal matrix and a semiseparable matrix when
discretized using associated Legendre functions of low orders.
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