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Abstract Randomized algorithms provide solutions to two ubiquitous problems:
(1) the distributed calculation of a principal component analysis or singular value
decomposition of a highly rectangular matrix, and (2) the distributed calculation of a
low-rank approximation (in the form of a singular value decomposition) to an arbi-
trary matrix. Carefully honed algorithms yield results that are uniformly superior
to those of the stock, deterministic implementations in Spark (the popular platform
for distributed computation); in particular, whereas the stock software will without
warning return left singular vectors that are far from numerically orthonormal, a sig-
nificantly burnished randomized implementation generates left singular vectors that
are numerically orthonormal to nearly the machine precision.
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1 Introduction

Singular value decomposition is the “Swiss Army Knife” and “Rolls Royce” of
matrix decompositions due to its ubiquitous, unsurpassed utility, as observed by
[11], quoting Dianne O’Leary. Indeed, singular value decomposition provides highly
accurate solutions to most problems in numerical linear algebra, and is particu-
larly important for low-rank approximation and principal component analysis, which
is among the most important methods in statistics, data analysis and analytics,
and machine learning, as discussed by [13] and many others. The singular value
decomposition of a matrix A consists of matrices U, ¥, and V such that

A=UZV*, (D

where the columns of U are orthonormal, as are the columns of V, the adjoint
(conjugate transpose) of V is V*, and X is square and diagonal and its entries
are nonnegative (this is called the “economic,” “reduced,” or “thin” singular value
decomposition by [10]). Accurate, efficient numerical calculation of the singular
value decomposition is essential for many applications, including in the now common
setting that the data being processed is distributed across multiple computers.

In fact, distributed calculations on clusters of computers are spawning whole
industries devoted to software platforms such as Hadoop and Spark, as discussed
by [9, 16], and many others; Spark is rapidly becoming a dominant software plat-
form, enabling distributed machine learning via its MLIib library. The current version
of Spark’s MLIib includes rudimentary routines for calculating the singular value
decomposition; we aim to make improvements based on combining and honing both
well-known and lesser-known numerical methods and tricks. The concluding sen-
tence of Section 4 below lists several often-overlooked details that turn out to be
especially important (and should make sense courtesy of Sections 2 and 3).

Below, we consider two problems that are of particular interest for distributed
computation due to their computational tractability: {1} calculating the “economic”
(that is, the “reduced” or “thin”) singular value decomposition of a tall and skinny
matrix (a matrix for which a full row can fit on a single machine), and {2} calcu-
lating a low-rank approximation to an arbitrary matrix such that the spectral norm
of the difference between the approximation and the matrix being approximated is
nearly as small as possible. These problems are relatively tractable since every matrix
in the resulting decompositions has at least one dimension that is small enough to
ensure that a full row can fit in memory on a single machine. The solutions below
to the second problem {2} leverage the solutions to the first problem {1}, returning
all results in the form of a singular value decomposition U X V*, where the columns
of U are orthonormal, as are the columns of V, and ¥ is diagonal and its entries are
nonnegative.
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The rest of the present paper has the following structure: Section 2 addresses prob-
lem {1}, introducing Algorithms 1-4. Section 3 addresses problem {2}, introducing
Algorithms 5-8, which leverage the Algorithms 1-4 discussed in Section 2. Section 4
summarizes our outlook. Appendices A and B corroborate the results presented ear-
lier in the paper, regardless of the number of executors in our cluster of computers.
Appendix C displays the times required to synthesize the matrices in our tests (just
for reference, for comparative purposes). None of the appendices is integral to the
main points of the present paper, and may be omitted.

Remark 1 Throughout the present paper, the “working precision” refers to the
machine precision adjusted to account for roundoff error. We simply set the work-
ing precision a priori, based on how much roundoff we might tolerate. For instance,
the working precision could be 10~!! for double-precision floating-point arithmetic
with matrices of the sizes considered below (whereas the machine precision would be
2.2 x 1071%). When interpreting the tables, please note the italicized text in Table 1
for the heading ||[A — UXV*|,.

Remark 2 The main purpose of our implementation is to add efficient principal com-
ponent analysis and singular value decomposition to Spark, not to compute them as

Table 1 Meanings of the headings in the other tables

Heading Meaning

m number of rows in the matrix being decomposed or approximated

n number of columns in the matrix being decomposed or approx-
imated

1 rank of the approximation being constructed in Algorithms 7

and 8 (for the tables using Algorithms 7 and 8)

i number of iterations used in Algorithm 5 (for the tables using
Algorithms 7 and 8, both of which leverage Algorithm 5)

Algorithm specifies the number of the algorithm used (or “pre-existing”
for the original implementation in Spark)

CPU Time sum over all CPU cores in all executors of the time in seconds
spent actually processing

Wall-Clock sum over all executors of the time in seconds that they were
reserved
|A—UZV*|, spectral norm of the discrepancy between the computed

approximation U ¥ V* and the matrix A being decomposed or
approximated; please note that our setting for the working pre-
cision largely determines this error — see Remark 1 and the
steps in the algorithms, “Discard. ...”

MaxEntry(|JU*U — I|) maximal absolute value of the entries in the difference between
U*U and the identity matrix /, where U £ V* is the computed
approximation

MaxEntry(|V*V — ) maximal absolute value of the entries in the difference between

V*V and the identity matrix /, where U X V* is the computed
approximation

@ Springer



H. Lietal.

efficiently as could be possible (in fact, bypassing Spark may enhance efficiency).
On the whole, the aspects of Spark unrelated to sophisticated mathematical algo-
rithms tend to be more important than the parts dependent on such algorithms, even
though the algorithmic aspects are the subject of the present paper. As much as we
would like to think that our own contributions are the most important, we do real-
ize that database management, stream processing, fault tolerance and recovery, ease
of deployment and administration, coupling with other systems, etc. are typically
far more important. Spark is becoming a dominant platform for machine learning
at scale, so the purpose of our implementation is to enable big data analytics for
Spark, whether or not Spark is the ideal platform for principal component analy-
sis or singular value decomposition. In particular, Spark is likely to distribute data
over clusters as appropriate for tasks other than principal component analysis and
singular value decomposition, and our implementation must deal with the data as
distributed however Spark sees fit. This remark is especially important in light of the
findings of [9].

Remark 3 The Spark implementation is available at http://github.com/hl475/svd
(and we hope that the main branch of Spark will pull in these changes soon).
For expository purposes, we also provide a serial implementation in Python 3, at
http://tygert.com/valid.tar.gz (the algorithms of the present paper are meant for par-
allel computation, but we opt to provide the Python 3 codes in addition to the
implementation for Spark, as the Python is far easier to read and run).

Remark 4 Many of the algorithms discussed below are randomized. Exhaustive
prior work, including that of [2, 4, 6, 12, 15, 19], and [20], demonstrates that the
randomized methods are at least as accurate, reliable, and efficient as the more
classical deterministic algorithms. The probability of obtaining results departing sig-
nificantly from those observed is well known to be negligible, both empirically and
theoretically (for rigorous proofs, see the work mentioned in the previous sentence).

2 Thin singular value decomposition of tall and skinny matrices

There are many ways to calculate the singular value decompositions of tall and skinny
matrices (matrices for which a full row can fit on a single machine). This section
compares different methods.

One method is perfectly numerically stable — producing results accurate to nearly
the machine precision — but requires merging intermediate results through multiple
levels of a dependency tree (such a merge is known as a “reduction”); this is the ran-
domized method of [2] and Section 5 of [4] (which draws on the techniques of [6] and
others). The randomization there eliminates the need for pivoting. The pseudocode
in Algorithms 1 and 2 summarizes this randomized method, accounting for several
considerations discussed shortly. Another method, based on computing the Gram
matrix A*A of the matrix A being processed, loses half the digits in some cases, but
can leverage extremely efficient accumulation/aggregation strategies with minimal
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blocking dependencies and synchronization requirements; this is the method of [8,
18, 19], and [20]. The pseudocode in Algorithms 3 and 4 summarizes this method,
accounting for the following considerations. Both methods produce highest accu-
racy when running their orthonormalization of singular vectors twice in succession,
though running twice is superfluous during all but the last of the subspace iterations
of the randomized algorithms for low-rank approximation discussed in the follow-
ing section. Running the orthonormalization twice ensures that the resulting singular
vectors are numerically orthonormal, though running twice has little effect on the
accuracy of their linear span (and little effect on the spectral norm of the difference
between the calculated decomposition and the matrix A being processed).

A third method, based on “tournament pivoting,” is similar to the first method dis-
cussed above, being reasonably numerically stable while requiring the merging of
intermediate results through multiple levels of a dependency/reduction tree; this is the
method of [5] and others. This third method is deterministic (unlike the first method),
but is otherwise more complicated, less efficient, less accurate, and weaker theoret-
ically with regard to revealing the ranks of the rank-deficient matrices commonly
encountered when using the singular value decomposition for dimension reduction;
similar remarks apply to a fourth method, that of [3]. In the sequel, we consider only
the first two methods discussed above. These two methods also happen to be the
easiest to implement (which can be critical for future deployment and maintenance).

Remark 5 For convenience, in our implementation of the first method mentioned
above (the randomized method) we replaced the usual random Gaussian matrix with
a product DFSDF S, where D and D are diagonal matrices whose diagonal entries
are independent and identically distributed random numbers drawn uniformly from
the unit circle in the complex plane, F is the discrete Fourier transform, and S and
S are independent uniformly random permutations (calculated via the Fisher-Yates-
Durstenfeld-Knuth shuffle of [7]). To process vectors of real numbers (rather than
complex numbers), we partitioned the vectors into pairs of real numbers and viewed
each pair as consisting of the real and imaginary parts of a complex number. We
found empirically that chaining two products DFS into DFSDF S was sufficient;
chaining a few (specifically, logarithmic in the number of columns of the matrix
whose singular value decomposition is being computed) is rigorously known to be
sufficient, as proven by [1]. Chaining several is affordable computationally but seems
like overkill.

Remark 6 When testing the second method mentioned above (the method based
on the Gram matrix) we found that explicitly normalizing the left singular vectors
improved accuracy significantly. Explicitly normalizing does require computing the
Euclidean norms of the columns of the matrix of left singular vectors, but this costs
substantially less than computing the Gram matrix in the first place.

Remark 7 For TSQR of [6] used in Algorithms 1 and 2, we modified Spark’s stock

implementation of TSQR to be numerically stable for any (possibly rank-deficient)
input matrix.
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The remainder of the present section gives empirical results on the first two meth-
ods discussed above and on the existing thin singular value decomposition of tall and
skinny matrices in Spark’s MLIib, which is based on Gram matrices, similar to the
second method mentioned above (though the existing Spark routine lacks the refine-
ment of Remark 6). We demonstrate the performance of the first two methods both
when running their orthonormalization twice in succession and when running only
once (with the resulting loss of accuracy and gain in speed). Our primary implemen-
tations of the algorithms in the present section process an IndexedRowMatrix from
Spark’s MLIib.

Our software includes examples of matrices with many different distributions of
singular values and singular vectors. For clarity of the presentation, the results we
present below pertain to the following class of matrices — matrices for which the
various algorithms produced accuracies near the worst that we encountered in our
experiments:

A=USV* 2)

where U and V are m x m and n x n discrete cosine transforms, respectively, and ¥
is the m x n matrix whose entries are all zeros aside from the diagonal entries

i1
S = exp (:ﬁ -In (10—20)> 3)

for j = 1,2, ..., n. Note that, like A from (2) and (3), matrices arising from real
data are often numerically rank-deficient; indeed, real data sets are often messy, with
duplicate or nearly duplicate columns and rows, symmetries or near symmetries that
limit the numerical rank, etc. Singular value decomposition and principal component
analysis are very helpful for untangling the mess in real data, and certainly need to
function reliably in such circumstances, circumstances such that the matrix being
processed may be highly ill-conditioned.

The headings of the tables have the meanings detailed in Table 1. Our Spark envi-
ronment is detailed in Table 2. We used many — 20 — iterations of the power method
in order to ascertain the spectral-norm errors reported in the tables. The timings in

Table 2 Settings for Spark

Parameter Setting
spark.dynamicAllocation.maxExecutors 180
“This is also the number of rows  gpark executor.cores 30
in a block of the resilient X ‘ 60
distributed dataset that underlies ~ SPAr<-executor.memory g
an IndexedRowMatrix. Our rowsPerPart (in a BlockMatrix)? 1024
software converts the matrix in colsPerPart (in a BlockMatrix) 1024
formula (2) from a BlockMatrix Spark version 201
to an IndexedRowMatrix P o
whenever necessary, which total machines available 200
preserves the number of rows BLAS-LAPACK library Intel MKL

per block
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Table 3 m = 1,000,000; n = 2,000

MaxEntry MaxEntry
Algorithm CPU Time Wall-Clock |A—-UZV*|, (|U*U - 1)) (Vv —1y))
1 1.48E+04 1.48E+04 9.76E-12 6.84E-06 3.51E-15
2 6.84E+04 9.01E+04 9.76E-12 6.44E-13 4.68E-15
3 1.33E+04 1.67E+04 9.92E-08 6.20E-04 1.73E-14
4 1.36E+04 2.52E+04 9.64E-07 1.10E-14 2.90E-15
pre-existing 1.12E+04 1.28E+04 1.83E-09 2.34E-00 3.12E-15

the tables do not include the time spent checking the accuracy (we used so many
power iterations just to be extra careful in providing highly accurate error estimates,
in order to facilitate fully trustworthy comparisons of the different algorithms).

Tables 3, 4 and 5 report timings and errors for several experiments. The recon-
struction errors ||A — UX V™|, for Algorithms 1 and 2 (which are similar) are
clearly superior to all those for Algorithms 3 and 4, which makes sense since the
latter algorithms use the Gram matrix and can therefore lose half their digits. For
the left singular vectors, the errors MaxEntry(|U*U — I|) for Algorithms 2 and 4
(which are similarly good) are clearly superior to all those for Algorithms 1 and 3,
which makes sense since the latter algorithms orthonormalize the singular vectors
only once. For the right singular vectors, the error MaxEntry(|V*V — [I|) is near the
machine precision (2.2 x 107!0) for all algorithms. All together, then, Algorithm
2 is the most accurate of all, with all its errors approaching the machine precision
adjusted for roundoff. However, on our cluster with our version of Spark, Algorithm 4
is somewhat faster than Algorithm 2; the reconstruction error ||A—U X V*||; is some-
what worse for Algorithm 4 than for Algorithm 2, but may be acceptable in many
circumstances.

As expected, the timings in Tables 3, 4 and 5 are roughly proportional to the num-
bers of rows in the matrices (the number of columns is fixed throughout these tables),
and the errors adhere to the working precision mentioned in Remark 1 and in the
pseudocodes for the algorithms.

Table 4 m = 100,000; n = 2,000

MaxEntry MaxEntry
Algorithm CPU Time Wall-Clock |A—-UZV*|2 (|U*U - 1)) (Vv —1y))
1 1.59E+03 1.02E+03 9.76E-12 5.47E-06 3.22E-15
2 6.85E+03 3.39E+03 9.76E-12 6.85E-13 4.06E-15
3 1.32E+03 9.19E+02 9.92E-08 3.11E-04 1.22E-14
4 1.58E+03 1.30E+03 9.64E-07 6.66E-15 2.69E-15
pre-existing 1.27E+03 9.68E+02 2.75E-15 9.91E-01 2.50E-15
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Table 5 m = 10,000; n = 2,000

MaxEntry MaxEntry
Algorithm CPU Time Wall-Clock |A—-UZV*|, (U*U - 1)) (v*v —1J)
1 3.86E+02 8.40E+01 9.76E-12 4.35E-06 3.55E-15
2 9.26E+02 1.42E+02 9.76E-12 7.67E-12 3.19E-15
3 2.52E+02 5.60E+01 9.92E-08 2.15E-04 1.82E-14
4 3.16E+02 8.40E+01 9.64E-07 6.66E-15 3.33E-15
pre-existing 2.15E+02 7.30E+01 1.89E-15 9.97E-01 2.57E-15

3 Low-rank approximation of arbitrary matrices

As discussed by [12], randomized algorithms permit the efficient calculation of
nearly optimal rank-k approximations to a given m X n matrix A, that is, of matrices
U, ¥, and V suchthat U ism x k, X is k x k, V is n x k, the columns of U are
orthonormal, as are the columns of V, X is diagonal and its entries are nonnegative,
and

A= UZV*2 ~ ok41(4), “)

where ||A — UX V*||; denotes the spectral norm of A — UX V*, and oy41(A) is the
spectral-norm accuracy of the best approximation to A of rank at most k (which is
also equal to the (k + 1)st greatest singular value of A).

Algorithm 1: Randomized singular value decomposition of tall and skinny
matrices (from [2])
Input: A tall and skinny real matrix A
Output: Real matrices U, X, and V such that A = U X V*, the columns of U
are orthonormal, as are the columns of V, and ¥ is diagonal and its
entries are nonnegative

1 Apply an appropriately random orthogonal matrix €2 (see Remark 5 regarding
“appropriately random”) to every column of A*, obtaining B = QA*.

2 Using the TSQR method of [6], compute a factorization B* = Q R, where the
columns of Q are orthonormal, and R is upper triangular.

3 Discard the rows of R corresponding to diagonal entries which are zero, and
discard the corresponding columns of Q, too (if working in finite-precision
arithmetic, view any diagonal entry of R as numerically zero that is less than the
first diagonal entry of R times the working precision).

4 Calculate the singular value decomposition R = U V*, where the columns of

U are orthonormal, as are the columns of \7, and ¥ is diagonal and its entries
are nonnegative.

5 Form U = Ql7 .

6 Apply the inverse of the random orthogonal matrix €2 from Step 1 to every
column of V, obtaining V = Q7 1V (as Qs orthogonal, Q= q*).
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Our codes implement Algorithms 4.4 and 5.1 of [12], duplicated here as Algorithms 5
and 6, respectively. The output of Algorithm 5 feeds into Algorithm 6. Algorithm 5
is based on tall-skinny matrix factorizations of the form Q - R, where the columns
of Q are orthonormal and R is square (R need not be triangular, however). Given a
matrix factorization of the form U - ¥ - V*, where the columns of U are orthonormal,
as are the columns of V, and where both ¥ and V are square, we use Q = U and
R = X V* to obtain a factorization of the form Q - R. In our implementations, we
obtain matrix factorizations of the form U-X-V* via the methods evaluated in Section
2 above. Below, we compare the results of using the two different methods evaluated
in Section 2 above for the tall-skinny matrix factorizations required in Algorithm 5,
always running Algorithm 5 and feeding its output into Algorithm 6.

We run the tall-skinny factorization twice in succession only for the very last step
in Algorithm 5; the purpose of the earlier steps in Algorithm 5 is to track a subspace,
and so long as the column spaces of the resulting matrices are accurate, then whether
the columns are numerically orthonormal matters little (in fact, replacing Q with the

Algorithm 2: Randomized singular value decomposition of tall and skinny
matrices (from [2]), with double orthonormalization
Input: A tall and skinny real matrix A
Output: Real matrices U, X, and V such that A = UXV*, the columns of U
are orthonormal, as are the columns of V, and ¥ is diagonal and its
entries are nonnegative
1 Apply an appropriately random orthogonal matrix €2 (see Remark 5 regarding
“appropriately random”) to every column of A*, obtaining B = QA*.
2 Using the TSQR method of [6], compute a factorization B* = Qlé , where the
columns of Q are orthonormal, and R is upper triangular.
3 Discard the rows of R corresponding to diagonal entries which are zero, and

discard the corresponding columns of Q, too (if working in finite-precision
arithmetic, view any diagonal entry of R as numerically zero that is less than the
first diagonal entry of R times the working precision).

4 Using the TSQR method of [6], compute a factorization O = OR, where the
columns of Q are orthonormal, and R is upper triangular.

5 Discard the rows of R corresponding to diagonal entries which are zero, and
discard the corresponding columns of Q, too (if working in finite-precision
arithmetic, view any diagonal entry of R as numerically zero that is less than the
first diagonal entry of R times the working precision).

6 Form T = RR.

7 Calculate the singular value decomposition 7' = U= V*, where the columns of

U are orthonormal, as are the columns of \7, and ¥ is diagonal and its entries
are nonnegative.

8 Form U = Ql7 .

9 Apply the inverse of the random orthogonal matrix €2 from Step 1 to every
column of V, obtaining V = Q7 1V (as Qs orthogonal, Q= q*).
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lower triangular/trapezoidal factor L in an LU factorization is sufficient, as shown
by [17] and [15] — the column space of L is the same as the column space of Q).

In principle, the last three steps in Algorithm 1 are superfluous for the task of
tracking a subspace and could be omitted. However, in the interest of modular pro-
gramming, we feed Algorithm 5 with the final results of Algorithms 1 and 3 rather
than with intermediate results; we found the extra costs to be tolerable, anyways.

The remainder of the present section gives empirical results on Algorithm 5 feed-
ing into Algorithm 6, when using in Algorithm 5 the two different methods evaluated
in Section 2; the resulting combinations are Algorithms 7 and 8. This section also
presents empirical results on the existing implementation of low-rank approxima-
tion in Spark’s MLIib, which is based on the implicitly restarted Arnoldi method in
ARPACK of [14]. Our implementations of the algorithms in the present section pro-
cess a BlockMatrix from Spark’s MLIib (a BlockMatrix can handle matrices that are
not skinny enough for a full row to fit in memory on a single machine).

Our software includes examples of matrices with many different distributions of
singular values and singular vectors, while for clarity (as with Section 2), the results
we present below pertain to the class of matrices defined in (2) — matrices for which
the various algorithms produced accuracies near the worst that we encountered in our
experiments. In (2) for the present section, the only entries of X that are potentially

nonzero are
5. Jj—1 -20
j.j = €Xp m -In (10 (5)

for j = 1,2, ..., 1. Notice that (5) is the same as (3) when replacing / in (5) with n.

Algorithm 3: Gram-based singular value decomposition of tall and skinny
matrices (from [20])
Input: A tall and skinny real matrix A
Output: Real matrices U, %, and V such that A = UX V*, the columns of U
are orthonormal, as are the columns of V, and X is diagonal and its
entries are nonnegative
1 Form the Gram matrix B = A*A.
2 Calculate the eigendecomposition B = V DV*, where the columns of V are
orthonormal, and D is diagonal and its entries are nonnegative.
3 Form U = AV.
4 Set X to be the diagonal matrix whose diagonal entries are the Euclidean norms

of the columns of U , in accord with Remark 6.
5 Discard the columns and rows of ¥ corresponding to diagonal entries which are

zero, and discard the corresponding columns of U and V, too (if working in
finite-precision arithmetic, view any entry of ¥ as numerically zero that is less
than the greatest entry of X times the square root of the working precision).

6 Form U = UX !, in accord with Remark 6.
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Also as in Section 2, the headings of the tables have the meanings detailed in
Table 1 (which defines /). Our Spark environment is detailed in Table 2. We checked
accuracies exactly as in Section 2 and again were sure to exclude the time spent
checking the accuracy from the timings reported in the tables.

Tables 9 and 10 consider sizes of matrices that are too large for computing all
possible singular values and singular vectors (rather than just a low-rank approxima-
tion) on our cluster with Spark. Table 9 indicates that, on our cluster with our version
of Spark, the timings for Algorithm 7 are similar to the timings for Algorithm 8. At

Algorithm 4: Gram-based singular value decomposition of tall and skinny
matrices (from [20]), with double orthonormalization

Input: A tall and skinny real matrix A
Output: Real matrices U, ¥, and V such that A = UX V*, the columns of U
are orthonormal, as are the columns of V, and ¥ is diagonal and its
entries are nonnegative
1 Form the Gram matrix B = A*A.
2 Calculate the eigendecomposition B = V DV*, where the columns of V are

orthonormal, and D is diagonal and its entries are nonnegative.
3 FormY = AV.

4 Set ¥ to be the diagonal matrix whose diagonal entries are the Euclidean norms

of the columns of f’, in accord with Remark 6.

5 Discard the columns and rows of ¥ corresponding to diagonal entries which are
zero, and discard the corresponding columns of Y and V, too (if working in
finite-precision arithmetic, view any entry of ¥ as numerically zero that is less
than the greatest entry of % times the square root of the working precision).

¢ FomY =Y fl_l, in accord with Remark 6.

7 Form the Gram matrix Z = Y*Y.

8 Calculate the eigendecomposition Z = W DW*, where the columns of W are
orthonormal, and D is diagonal and its entries are nonnegative.

9 Form Q =YW.

10 Set T to be the diagonal matrix whose diagonal entries are the Euclidean norms

of the columns of Q in accord with Remark 6.
11 Discard the columns and rows of T corresponding to diagonal entries which are

zero, and discard the corresponding columns of Q and W, too (if working in
finite-precision arithmetic, view any entry of T as numerically zero that is less
than the greatest entry of 7' times the square root of the working precision).

12 Form Q = QT !, in accord with Remark 6.

13 Form R = TW*SV*,

14 Calculate the singular value decomposition R = P X V*, where the columns of
P are orthonormal, as are the columns of V, and X is diagonal and its entries
are nonnegative.

15 Form U = QP.
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Algorithm 5: Randomized subspace iteration (Algorithm 4.4 of [12])

Input: A real m x n matrix A and integers / and i such that 0 </ < min(m, n)
and i > 0; the number of iterations is i
Qutput: A real m x [ matrix Q whose columns are orthonormal and whose
range approximates the range of A, in the sense that the spectral norm
A — QQO*Al|, is small

1 Form an n x [ matrix Qg whose entries are independent and identically
distributed centered Gaussian random variables.

2 for j =1toi do

3 ForijzAijl.

4 Compute a factorization ¥; = Q; R, where the columns of Q; are

orthonormal and R; is square, using Algorithm 1 or Algorithm 3 (as

described at the beginning of Section 3).

5 Form f’jzA*Qj.

6 Compute a factorization Y; = O R;, where the columns of Q; are

orthonormal and R j 18 square, using Algorithm 1 or Algorithm 3 (as

| described at the beginning of Section 3).

7 Form Y = AQi.

8 Compute a factorization ¥ = QR, where the columns of Q are orthonormal and
R is square, using in this last step the double orthonormalization of Algorithms
2 and 4, not the single orthonormalization of Algorithms 1 and 3 (and, again,
see the beginning of Section 3).

the same time, Table 10 indicates that the reconstruction error |A — UXV*||, for
Algorithm 7 is superior to the error for Algorithm 8, while the other notions of
accuracy are comparable for both. Thus, on our cluster with our version of Spark,
Algorithm 7 makes more sense than Algorithm 8.

Algorithm 6: Straightforward singular value decomposition (Algorithm 5.1 of
[12])

Input: Matrices A and Q such that the spectral norm |A — Q Q*A||, is small
and the columns of Q are orthonormal (the matrix Q output from
Algorithm 5 is suitable for the input here)

Output: Matrices U, X, and V such that the spectral norm ||[A — UX V*||5 is
small, the columns of U are orthonormal, as are the columns of V, and
¥ is diagonal and its entries are nonnegative

1 Form the matrix B = Q*A.

2 Compute a singular value decomposition, B = U X V*, where the columns of U
are orthonormal, as are the columns of V, and X is diagonal and its entries are
nonnegative.

3 Form the matrix U = Q(} .
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Algorithm 7: Algorithm 6 fed with the results of Algorithm 5 using Algorithms
1 and 2

Input: A real m x n matrix A and integers / and i such that 0 </ < min(m, n)
and i > 0; the number of iterations for Algorithm 5 is i
Output: Matrices U, X, and V such that the spectral norm ||[A — UX V*||5 is
small, the columns of U are orthonormal, as are the columns of V, and
¥ is diagonal and its entries are nonnegative

1 Compute a real m x [ matrix Q whose columns are orthonormal, such that the
spectral norm ||A — Q Q*Al|, is small, via Algorithm 5 with i iterations, using
Algorithm 1 in Algorithm 5’s Steps 4 and 6 and Algorithm 2 in Algorithm 5’s
last step.

2 Compute matrices U, X, and V such that the spectral norm ||[A — UX V*||5 is
small, the columns of U are orthonormal, as are the columns of V, and X is
diagonal and its entries are nonnegative, via Algorithm 6 fed with matrices A
and Q from the first step of the present algorithm.

Algorithm 8: Algorithm 6 fed with the results of Algorithm 5 using Algorithms
3and 4
Input: A real m x n matrix A and integers / and i such that 0 </ < min(m, n)
and i > 0; the number of iterations for Algorithm 5 is i
Output: Matrices U, X, and V such that the spectral norm ||[A — UX V*|5 is
small, the columns of U are orthonormal, as are the columns of V, and
¥ is diagonal and its entries are nonnegative

1 Compute a real m x [ matrix Q whose columns are orthonormal, such that the
spectral norm ||A — Q Q*Al|, is small, via Algorithm 5 with i iterations, using
Algorithm 3 in Algorithm 5’s Steps 4 and 6 and Algorithm 4 in Algorithm 5’s
last step.

2 Compute matrices U, X, and V such that the spectral norm ||[A — UX V*||5 is
small, the columns of U are orthonormal, as are the columns of V, and X is
diagonal and its entries are nonnegative, via Algorithm 6 fed with matrices A
and Q from the first step of the present algorithm.

Table 6 m = 1,000,000; n =2,000; =20;i =2

MaxEntry MaxEntry
Algorithm CPU Time Wall-Clock JA—UZV*|, (U*u - 1)) (v*v —1))
7 3.06E+03 8.80E+03 2.64E-12 4.44E-15 8.88E-16
8 2.80E+03 9.94E+03 4.83E-07 3.77E-15 5.55E-16
pre-existing 6.06E+03 1.16E+04 3.36E-10 1.00E-00 6.66E-16
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Table 7 m = 100,000; n = 2,000;/ =20;i =2

MaxEntry MaxEntry
Algorithm CPU Time Wall-Clock |A—-UZV*|, (U*U - 1)) (v*v —1J)
7 3.28E+02 4.78E+02 2.64E-12 3.11E-15 1.44E-15
8 4.33E+02 4.71E+02 4.83E-07 1.55E-15 8.36E-16
pre-existing 6.17E+02 4.92E+02 3.36E-10 1.00E-00 4.44E-16
Table 8 m = 10,000; n =2,000; =20;i =2
MaxEntry MaxEntry
Algorithm CPU Time Wall-Clock |A—-UZV*|, (U*U - 1)) (Vv —1J))
7 7.20E+01 7.50E+01 2.64E-12 2.22E-15 1.89E-15
8 8.00E+01 9.30E+01 4.83E-07 6.66E-16 6.66E-16
pre-existing 1.18E+02 9.40E+01 3.36E-10 1.00E-00 6.66E-16
Table 9 Timings for / = 10;
i=2 Algorithm m n CPU Time Wall-Clock
7 100,000 100,000 1.04E+04 4.88E+03
8 100,000 100,000 9.52E+03 7.41E+03
7 1,000,000 10,000 9.11E+03 1.05E+04
8 1,000,000 10,000 9.56E+03 1.01E+04
7 100,000 10,000 1.10E+03 5.40E+02
8 100,000 10,000 1.02E+03 4.93E+02
Table 10 Errors for/ =10;i =2
MaxEntry MaxEntry
Algorithm m n |A—=UXZV*|, (|U*U - 1)) (V*v —1))
7 100,000 100,000 7.74E-12 6.66E-16 1.78E-15
8 100,000 100,000 2.15E-07 7.77E-16 1.33E-15
7 1,000,000 10,000 7.74E-12 3.00E-15 7.77E-16
8 1,000,000 10,000 2.15E-07 2.89E-15 4.44E-16
7 100,000 10,000 7.74E-12 1.22E-15 9.99E-16
8 100,000 10,000 2.15E-07 2.86E-16 4.44E-16

@ Springer



Randomized algorithms for distributed computation of principal...

Tables 6, 7 and 8 correspond to Tables 3, 4 and 5. In accord with Tables 9 and
10, on our cluster with our version of Spark, the timings for Algorithm 7 are similar
to the timings for Algorithm 8, while the reconstruction error |A — UXV*||, for
Algorithm 7 is superior to the error for Algorithm 8, and the other notions of accuracy
are comparable for both. Tables 6, 7 and 8 thus also show that, on our cluster with
our version of Spark, Algorithm 7 makes more sense than Algorithm 8.

The timings in Table 9 and the errors in Table 10 are as expected, as are all the
results in Tables 6, 7 and 8, with the timings roughly proportional to / times the num-
bers of entries in the matrices, and with the errors adhering to the working precision
mentioned in Remark 1 and in the pseudocodes for the algorithms.

4 Conclusion

The numerical experiments reported above illustrate that the algorithms detailed
in this paper outperform (or at least match) the stock implementations for Spark’s
MLIib with respect to both accuracy and efficiency. As Spark’s library for machine
learning migrates to the upcoming DataFrame format, it could incorporate these algo-
rithms, as could other platforms for distributed computation. The key is attention to
details elaborated above, including randomization, explicit normalization of singular
vectors, and choosing carefully between single and double orthonormalization and
between strict orthonormality and merely tracking subspaces during various stages
of the algorithms.

Acknowledgements We would like to thank the anonymous editor and referees for shaping the
presentation.

Appendix A: Restricting to ten times fewer executors

Tables 11, 12, 13, 14, 15, 16, 17 and 18 display results analogous to
those in Tables 3-5, 6-8, 9 and 10, but with the number of executors,
spark.dynamicAllocation.maxExecutors, set to 18 (rather than 180). The results are
broadly comparable to those presented earlier. This indicates how the timings scale

Table 11 m = 1,000,000; n = 2,000; restricted to ten times fewer executors

MaxEntry MaxEntry
Algorithm CPU Time Wall-Clock JA—-UZV*|> (u*u - 1)) (v*v —1)
1 9.23E+03 4.72E+03 9.76E-12 6.21E-06 3.00E-15
2 5.91E+04 5.44E+04 9.76E-12 6.75E-13 3.06E-15
3 7.36E+03 4.14E+03 9.92E-08 6.13E-04 1.38E-14
4 1.00E+04 7.72E+03 9.64E-07 1.02E-14 2.69E-15
pre-existing 6.54E+03 3.56E+03 1.79E-09 3.17E-00 3.96E-15
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Table 12 m = 100,000; n = 2,000; restricted to ten times fewer executors

MaxEntry MaxEntry
Algorithm CPU Time Wall-Clock |A—=UZV*|, (U*U — 1)) (|V*V = 1))
1 1.74E+03 8.76E+02 9.76E-12 5.30E-06 3.33E-15
2 7.08E+03 3.74E+03 9.76E-12 4.93E-13 3.89E-15
3 1.26E+03 7.36E+02 9.92E-08 2.33E-04 1.87E-14
4 1.62E+03 1.01E+03 9.64E-07 5.33E-15 3.33E-15
pre-existing 1.27E+03 8.13E+02 2.15E-15 9.92E-01 2.32E-15
Table 13 m = 10,000; n = 2,000; restricted to ten times fewer executors

MaxEntry MaxEntry
Algorithm CPU Time Wall-Clock |A—=UZV*|, (U*U — 1)) (|V*V = 1))
1 4.02E+02 9.80E+01 9.76E-12 5.80E-06 3.67E-15
2 8.69E+02 1.70E+02 9.76E-12 2.65E-11 3.88E-15
3 2.04E+02 6.70E+01 9.92E-08 2.55E-04 1.73E-14
4 2.26E+02 9.00E+01 9.64E-07 5.33E-15 2.89E-15
pre-existing 1.86E+02 9.50E+01 2.45E-15 9.96E-01 2.36E-15

Table 14 m = 1,000,000; n = 2,000; [ = 20; i = 2; restricted to ten times fewer executors

MaxEntry MaxEntry
Algorithm CPU Time Wall-Clock |A—=UZV*|, (|U*U — 1)) (|V*V = 1))
7 2.48E+03 4.44E+03 2.64E-12 4.88E-15 1.22E-15
8 2.33E+03 4 47E+03 4.83E-07 3.33E-15 6.66E-16
pre-existing 5.56E+03 6.84E+03 3.36E-10 1.00E-00 6.66E-16
Table 15 m = 100,000; n = 2,000; [ = 20; i = 2; restricted to ten times fewer executors

MaxEntry MaxEntry
Algorithm CPU Time Wall-Clock |A—UZV*|, (U*U - 1)) (|V*V —1))
7 3.99E+02 4.10E+02 2.64E-12 2.89E-15 1.55E-15
8 3.28E+02 4.05E+02 4.83E-07 2.44E-15 8.88E-16
pre-existing 6.31E+02 5.17E+02 3.36E-10 1.00E-00 8.88E-16

@ Springer



Randomized algorithms for distributed computation of principal...

with the number of machines. Of course, other processing in Spark (not necessarily
related to principal component analysis or singular value decomposition) can benefit
from having the data stored over more executors, and moving data around the clus-
ter can dominate the overall timings in real-world usage (see also Remark 2 in the
introduction of the present paper).

Table 16 m = 10,000; n = 2,000; ! = 20; i = 2; restricted to ten times fewer executors

MaxEntry MaxEntry
Algorithm CPU Time Wall-Clock |A—=UZV*|, (U*U - 1)) (|V*V —1))
7 7.60E+01 9.80E+01 2.64E-12 2.66E-15 1.55E-15
8 6.30E+01 7.40E+01 4.83E-07 2.22E-15 1.55E-15
pre-existing 1.21E+02 9.80E+01 3.36E-10 1.00E-00 6.66E-16

Table 17 Timings for ! = 10;
i = 2; restricted to ten times Algorithm m n CPU Time Wall-Clock
fewer executors

7 100,000 100,000 1.04E+04 6.07E+03

8 100,000 100,000 1.02E+04 6.28E+03

7 1,000,000 10,000 9.36E+03 5.93E+03

8 1,000,000 10,000 9.38E+03 6.77E+03

7 100,000 10,000 1.01E+03 5.19E+02

8 100,000 10,000 1.01E+03 5.04E+02
Table 18 Errors for [ = 10; i = 2; restricted to ten times fewer executors

MaxEntry MaxEntry

Algorithm m n |A—=UZV*|, (|U*U - 1)) (|V*V —1J)
7 100,000 100,000 7.74E-12 1.55E-15 1.78E-15
8 100,000 100,000 2.15E-07 8.88E-16 1.78E-15
7 1,000,000 10,000 7.74E-12 1.55E-15 6.66E-16
8 1,000,000 10,000 2.15E-07 1.11E-15 1.11E-16
7 100,000 10,000 7.74E-12 2.00E-15 8.88E-16
8 100,000 10,000 2.15E-07 8.88E-16 7.77E-16

Appendix B: Another example with ten times fewer executors

Similar to Appendix A, the present appendix presents Tables 19, 20, 21, 22,
23, 24, 25 and 26, reporting results analogous to those in Tables 3-5, 6-8, 9
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Table 19 m = 1,000,000; n = 2,000; restricted to ten times fewer executors; Appendix B defines the
singular values of the matrix being processed

MaxEntry MaxEntry
Algorithm CPU Time Wall-Clock JA—-UZV*|> (u*u - 1)) (v*v —1))
1 9.47E+03 1.14E+04 1.67E-14 6.22E-15 3.33E-15
2 1.06E+05 1.07E+05 1.61E-14 6.88E-15 3.22E-15
3 8.91E+03 7.65E+03 1.84E-14 9.24E-14 1.78E-14
4 3.20E+04 3.88E+04 2.34E-14 8.88E-15 3.60E-15
pre-existing 5.98E+03 6.80E+03 7.72E-15 1.00E-00 6.18E-15

and 10, with the same setting as in Appendix A of the number of executors,
spark.dynamicAllocation.maxExecutors, being 18 (rather than 180). The present
appendix follows an anonymous reviewer’s suggestion, using for the diagonal
entries of X in (2) singular values X; ; from a fractal “Devil’s staircase” with many
repeated singular values of varying multiplicities; Fig. 1 plots the singular values for
Tables 19-21. Specifically, the singular values arise from the following Scala code:

(0 until k) .toArray.map( j =>
Integer.parselnt (Integer.toOctalString (
Math.round(j * Math.pow(8, 6).toFloat / k)
) .replaceAll (" [1-7]", "1"), 2)
/ Math.pow(2, 6) / (1 - Math.pow(2, -6))
) .sorted.reverse

Here, k = n for Tables 19-21 and k = [ for Tables 22-26. Thus, the singular
values arise from replacing the octal digits 1-7 with the binary digit 1 (keeping the
octal digit 0 as the binary digit 0) for rounded representations of the real numbers
between 0 and 1, then rescaling so that the final singular values range from O to 1,
inclusive.

Table 20 m = 100,000; n = 2,000; restricted to ten times fewer executors; Appendix B defines the
singular values of the matrix being processed

MaxEntry MaxEntry
Algorithm CPU Time Wall-Clock JA—-UZV*|> (u*u - 1)) (v*v —1)
1 1.71E+03 8.81E+02 1.62E-14 4.24E-15 3.81E-15
2 1.15E+04 5.52E+03 1.61E-14 3.64E-15 3.33E-15
3 1.58E+03 9.55E+02 2.27E-14 1.46E-13 1.85E-14
4 4.02E+03 2.49E+03 2.48E-14 4.66E-15 4.04E-15
pre-existing 1.19E+03 7.58E+02 7.47E-15 1.00E-00 5.47E-15
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Table 21 m = 10,000; n = 2,000; restricted to ten times fewer executors; Appendix B defines the singular
values of the matrix being processed

MaxEntry MaxEntry
Algorithm CPU Time Wall-Clock JA—-UZV*|> (u*u - 1)) (v*v —1))
1 3.35E+02 8.30E+01 1.70E-14 4.97E-15 4.95E-15
2 1.74E+03 1.79E+02 1.67E-14 4.52E-15 5.01E-15
3 2.45E+02 9.80E+01 1.83E-14 1.51E-13 1.53E-14
4 5.96E+02 1.30E+02 2.36E-14 5.23E-15 4.94E-15
pre-existing 2.11E+02 8.40E+01 6.23E-15 1.00E-00 3.82E-15

Table 22 m = 1,000,000; n = 2,000; [ = 20; i = 2; restricted to ten times fewer executors; Appendix B
defines the singular values of the matrix being processed

MaxEntry MaxEntry
Algorithm CPU Time Wall-Clock |A—UZV*|, (U*U - 1)) (|V*V —1))
7 3.49E+03 1.09E+04 2.69E-15 2.00E-15 1.55E-15
8 3.20E+03 1.11E+04 8.65E-15 3.44E-15 8.88E-16
pre-existing 6.34E+03 1.96E+04 2.12E-15 1.00E-00 6.66E-16

Table 23 m = 100,000; n = 2,000; [ = 20; i = 2; restricted to ten times fewer executors; Appendix B
defines the singular values of the matrix being processed

MaxEntry MaxEntry
Algorithm CPU Time Wall-Clock JA—-UZV*|> (|u*u - 1)) (V*v —1)
7 4.78E+02 7.41E+02 3.49E-15 2.44E-15 1.11E-15
8 4.50E+02 7.43E+02 3.14E-15 2.11E-15 9.99E-16
pre-existing 7.99E+02 8.01E+02 1.09E-15 1.55E-15 5.55E-16

Table 24 m = 10,000; n = 2,000; [ = 20; i = 2; restricted to ten times fewer executors; Appendix B
defines the singular values of the matrix being processed

MaxEntry MaxEntry
Algorithm CPU Time Wall-Clock JA—UZV*|, (U*u - 1)) (v*v —1))
7 1.31E+02 1.26E+02 2.25E-15 9.78E-16 1.11E-15
8 1.14E+02 1.26E+02 8.33E-15 1.78E-15 1.55E-15
pre-existing 1.66E+02 1.47E+02 7.80E-16 8.88E-16 8.88E-16
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Table 25 Timings for ! = 10;
i = 2; restricted to ten times
fewer executors; Appendix B
defines the singular values of
the matrix being processed

Algorithm m n CPU Time  Wall-Clock
7 100,000 100,000  1.43E+04 1.01E+04
8 100,000 100,000  1.41E+04 1.11E+04
7 1,000,000 10,000 1.17E+04 1.45E+04
8 1,000,000 10,000 1.13E+04 1.58E+04
7 100,000 10,000 1.24E+03 1.11E+03
8 100,000 10,000 1.16E+03 1.42E+03

Table 26 Errors for/ = 10;i = 2; restricted to ten times fewer executors; Appendix B defines the singular
values of the matrix being processed

MaxEntry MaxEntry

Algorithm m n |A—=UZV*|, (U*U - 1)) (|V*V —1))
7 100,000 100,000 3.26E-15 8.88E-16 1.33E-15
8 100,000 100,000 3.14E-15 1.00E-15 1.01E-15
7 1,000,000 10,000 2.45E-15 3.11E-15 5.77E-16
8 1,000,000 10,000 4.20E-15 3.11E-15 9.99E-16
7 100,000 10,000 1.72E-15 1.55E-15 1.11E-15
8 100,000 10,000 2.10E-15 2.22E-15 8.88E-16
Fig.1 Singular values X i, 1.0
22,2 -+ -» 22000,2000, Which are
the diagonal entries of X in (2),
when k = n = 2,000, for : 0.8 i
Tables 19-21 in Appendix B N
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Again, the results are broadly comparable to those presented earlier; in some
cases some of the algorithms attain better accuracy on the examples of the present
appendix, but otherwise the numbers in the tables are similar.

Appendix C: Timings for generating the test matrices

For comparative purposes, Tables 27, 28 and 29 list the times required to generate (2)
with (3) or (5) using the settings in Table 2.

Table 27 Timings for

generating (2) with (3) m n CPU Time Wall-Clock
1,000,000 2,000 4.76E+03 3.91E+03
100,000 2,000 4.50E+02 2.48E+02
10,000 2,000 5.00E+01 2.60E+01

Table 28 Timings for

generating (2) with (5) and m n CPU Time Wall-Clock
=20
1,000,000 2,000 5.61E+02 1.37E+03
100,000 2,000 6.30E+01 7.80E+01
10,000 2,000 8.00E+00 1.70E+01

Table 29 Timings for

generating (2) with (5) and m n CPU Time Wall-Clock
=10
100,000 100,000 7.30E+01 7.60E+01
1,000,000 10,000 4.93E+02 1.79E+03
100,000 10,000 4.20E+01 5.20E+01
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