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Multinomial logistic regression and other classification schemes used in conjunction 
with convolutional networks (convnets) were designed largely before the rise 
of the now standard coupling with convnets, stochastic gradient descent, and 
backpropagation. In the specific application to supervised learning for convnets, 
a simple scale-invariant classification stage is more robust than multinomial logistic 
regression, appears to result in somewhat lower errors on several standard test sets, 
has similar computational costs, and features precise control over the actual rate of 
learning. “Scale-invariant” means that multiplying the input values by any nonzero 
real number leaves the output unchanged.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Classification of a vector of real numbers (called “feature activations”) into one of several discrete cat-
egories is well established and well studied, with solutions such as the ubiquitous multinomial logistic 
regression reviewed, for example, by [2]. However, conventional classifiers may not couple best with gen-
eration of the feature activations via convolutional networks (convnets) trained using stochastic gradient 
descent, as discussed, for example, by [7]. As discussed by [13], complex-valued convnets are essentially 
equivalent to tools familiar in harmonic analysis — data-driven multiscale windowed spectra, data-driven 
multiwavelet absolute values, or (in their most general configuration) data-driven nonlinear multiwavelet 
packets. “Data-driven” refers to fitting (also known as learning or training) the combination of the convnet 
and the classification stage by minimizing the cost/loss/objective function associated with the classification. 
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Classical classification stages neglect that many convnets are “equivariant” to scalar multiplication — mul-
tiplying the input values by any real number multiplies the output by the same factor; the present paper 
leverages this equivariance via a “scale-invariant” classification stage — a stage for which multiplying the 
input values by any nonzero real number leaves the output unchanged. The scale-invariant classification 
stage turns out to be more robust to outliers (including obviously mislabeled data), fits/learns/trains pre-
cisely at the rate that the user specifies, and apparently results in slightly lower errors on several standard 
test sets when used in conjunction with some typical convnets for generating the feature activations. The 
computational costs are comparable to those of multinomial logistic regression. Similar classification has 
been introduced earlier in other contexts by [3,6,10,12,14,15] and others. Complementary normalization in-
cludes the work of [1,4] and the associated references. The key to effective learning is rescaling, as described 
in Section 3 below (see especially the last paragraph there).

The remainder of the present paper has the following structure: Section 2 sets the notation. Section 3
introduces the scale-invariant classification stage. Section 4 analyzes its robustness. Section 5 illustrates the 
performance of the classification on several standard data sets. Section 6 draws several conclusions. The two 
appendices, Appendix A and Appendix B, provide more detailed derivations.

2. Notational conventions

All numbers used in the classification stage will be real valued (though the numbers used for generating 
the inputs to the stage may in general be complex valued). We follow the recommendations of [8]: all vectors 
are column vectors (aside from gradients of a scalar with respect to a column vector, which are row vectors), 
and we use ‖v‖ to denote the Euclidean norm of a vector v; that is, ‖v‖ is the square root of the sum of 
the squares of the entries of v. We use ‖A‖ to denote the spectral norm of a matrix A; that is, ‖A‖ is the 
greatest singular value of A, which is also the maximum of ‖Av‖ over every vector v such that ‖v‖ = 1. 
The terminology “Frobenius norm” of A refers to the square root of the sum of the squares of the entries 
of A. The spectral norm of a vector viewed as a matrix having only one column or one row is the same as 
the Euclidean norm of the vector; the Euclidean norm of a matrix viewed as a vector is the same as the 
Frobenius norm of the matrix.

3. A scale-invariant classification stage

We study a linear classification stage that assigns one of k classes to each real-valued vector x of feature 
activations (together with a measure of confidence in its classification), with the assignment being inde-
pendent of the Euclidean norm of x; the Euclidean norm of x is its “scale.” We associate to the k classes 
target vectors t1, t2, . . . , tk that are the vertices of either a standard simplex or a regular simplex embedded 
in a Euclidean space of dimension m ≥ k — the dimension of the embedding space being strictly greater 
than the minimum (k − 1) required to contain the simplex will give extra space to help facilitate learning; 
[3,6,10,12,14,15] (amongst others) discuss these simplices and their applications to classification. For the 
standard simplex, the targets are just the standard basis vectors, each of which consists of zeros for all but 
one entry. For both the regular and standard simplices,

‖t1‖ = ‖t2‖ = · · · = ‖tk‖ = 1. (1)

Given an input vector x of feature activations, we identify the target vector tj that is nearest in the Euclidean 
distance to

z = y
, (2)
‖y‖
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where

y = Ax (3)

for an m ×n matrix A determined via learning as discussed shortly. The index j such that ‖z−tj‖ is minimal 
is the index of the class to which we assign x. The classification is known as “linear” or “multi-linear” due 
to (3). The index j to which we assign x is clearly independent of the Euclidean norm of x due to (2), and 
the assignment is “scale-invariant” even if we rescale A by a nonzero scalar multiple.

To determine A, we first initialize all its entries to random numbers, then divide each entry by the 
Frobenius norm of A and multiply by the square root of the number of rows in A. We then conduct 
iterations of stochastic gradient descent as advocated by [7], updating A to Ã on each iteration via

Ã = A− h

(
∂c

∂A

)�
, (4)

where h is a positive real number (known as the “learning rate” or “step length”) and c is the cost to be 
minimized that is associated with the vector x of feature activations for a vector chosen at random from 
the input set:

c = ‖z − tj‖2, (5)

where tj is the target for the correct class associated with x, and z is the vector-valued function of x specified 
in (2) and (3). Appendix A calculates ∂c/∂A explicitly.

As elaborated by [7], usually we combine stochastic gradient descent with backpropagation to update the 
entries of x associated with the chosen input, which requires propagating the gradient ∂c/∂x back into the 
network generating the feature activations that are the entries of x for the chosen input sample. We use the 
same learning rate from the classification stage throughout the network generating the feature activations. 
Fortunately, the Euclidean norm of the gradient ∂c/∂x is bounded independent of the scaling of A:

∥∥∥∥ ∂c∂x
∥∥∥∥ ≤ 4‖A‖

‖Ax‖ ; (6)

please note that scaling the matrix A by any nonzero scalar multiple has no effect on the right-hand side 
of (6) — the gradient propagating in backpropagation is independent of the size of A. Appendix B gives a 
proof of (6).

Critically, after every update as in (4), we rescale the matrix A: we divide every entry by the Frobenius 
norm of A and multiply by the square root of the number of rows in A. We use the rescaled matrix for 
subsequent iterations of stochastic gradient descent. Rescaling A yields precisely the same vector z in (2)
and cost c in (5); together with the scale-invariance of the right-hand side of (6), rescaling ensures that the 
stochastic gradient iterations are effective and numerically stable for any learning rate h.

4. Robustness

Combining (1) and the fact that the Euclidean norm of z from (2) is 1 yields that the cost c from (5)
satisfies

0 ≤ c ≤ 4. (7)
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As reviewed by [2], the cost associated with classification via multinomial logistic regression is

r = ln
(

m∑
�=1

exp(y(�))
)

− y(j), (8)

where j is the index among 1, 2, . . . , k of the correct class, and y(1), y(2), . . . , y(m) are the entries of the 
vector y from (3), with m = k for multinomial logistic regression. Whereas the cost c is bounded as in (7), 
the cost r from (8) is bounded only for positive values of y(j), growing linearly for negative y(j) (when fixing 
y(�) for all � �= j). Thus, c is more robust than r to outliers; logistic regression is less robust to outliers 
(including obviously mislabeled inputs).

5. Numerical experiments

The present section provides a brief empirical evaluation of rescaling in comparison with the usual 
multinomial logistic regression, performing the learning for both via stochastic gradient descent (the learning 
is end-to-end, training the entire network — including both the convolutional network and the classification 
stage — jointly, with the same learning rate everywhere). The experiments (and corresponding figures) 
consider various choices for the learning rate h and for the dimension m of the space containing the simplex 
targets. We renormalize the parameters in the classification stage after every minibatch of 100 samples when 
rescaling (not with the multinomial logistic regression), as detailed in the last paragraph of Section 3 and the 
penultimate paragraph of the present section. The rescaled approach appears to perform somewhat better 

Table 1
CIFAR-10 and MNIST, larger (with † = 1 color channel for the grayscale MNIST, and † = 3 for the full-color CIFAR-10).

Stage Input images Output images Size of kernel Input image size Output image size
First † 16 3 × 3 32 × 32 15 × 15
Second 16 128 2 × 2 15 × 15 7 × 7
Third 128 1024 2 × 2 7 × 7 3 × 3

Table 2
CIFAR-10 and MNIST, smaller (with † = 1 color channel for the grayscale MNIST, and † = 3 for the full-color CIFAR-10).

Stage Input images Output images Size of kernel Input image size Output image size
First † 16 3 × 3 32 × 32 15 × 15
Second 16 64 2 × 2 15 × 15 7 × 7
Third 64 256 2 × 2 7 × 7 3 × 3

Table 3
ImageNet subset, larger (full color, with 3 color channels).

Stage Input images Output images Size of kernel Input image size Output image size
First 3 16 5 × 5 128 × 128 62 × 62
Second 16 64 3 × 3 62 × 62 30 × 30
Third 64 256 3 × 3 30 × 30 14 × 14
Fourth 256 1024 3 × 3 14 × 14 6 × 6

Table 4
ImageNet subset, smaller (the smaller number is in italics).

Stage Input images Output images Size of kernel Input image size Output image size
First 3 16 5 × 5 128 × 128 62 × 62
Second 16 64 3 × 3 62 × 62 30 × 30
Third 64 256 3 × 3 30 × 30 14 × 14
Fourth 256 256 3 × 3 14 × 14 6 × 6
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Fig. 1. CIFAR-10 — larger architecture.

than multinomial logistic regression in all but Fig. 2 for the experiments detailed in the present section. 
The remainder of the present section provides details.

Following [7] and [9], the architectures for generating the feature activations are convolutional networks 
(convnets) consisting of series of stages, with each stage feeding its output into the next (except for the last, 
which feeds into the classification stage). Each stage convolves each image from its input against several 
learned convolutional kernels, summing together the convolved images from all the inputs into several output 
images, then takes the absolute value of each pixel of each resulting image, and finally averages over each 
patch in a partition of each image into a grid of 2 × 2 patches. All convolutions are complex valued and 
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Fig. 2. MNIST — larger architecture.

produce pixels only where the original images cover all necessary inputs (that is, a convolution reduces each 
dimension of the image by one less than the size of the convolutional kernel). We subtract the mean of 
the pixel values from each input image before processing with the convnets, and we append an additional 
feature activation to those obtained from the convnets, namely the standard deviation of the set of values 
of the pixels in the image. For each data set, we use two network architectures, where the second is a 
somewhat smaller variant of the first. We consider three data sets whose training properties are reasonably 
straightforward to investigate, with each set consisting of k = 10 classes of images; the first two are the 
usual CIFAR-10 and MNIST of [5] and [7]. The third is a subset of the 2012 ImageNet data set of [11], 
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Fig. 3. ImageNet subset — larger architecture.

retaining 10 classes of images, representing each class by 100 samples in a training set and 50 per class in a 
testing set. CIFAR-10 contains 50,000 images in its training set and 10,000 images in its testing set. MNIST 
contains 60,000 images in its training set and 10,000 images in its testing set. The images in the MNIST set 
are grayscale. The images in both the CIFAR-10 and ImageNet sets are full color, with three color channels. 
We neither augmented the input data nor regularized the cost/loss functions. We used the Torch7 platform 
— http://torch.ch — for all computations.

http://www.torch.ch
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Fig. 4. CIFAR-10 — smaller architecture.

Tables 1–4 display the specific configurations we used. “Stage” specifies the positions of the indicated 
layers in the convnet. “Input images” specifies the number of images input to the given stage for each 
sample from the data. “Output images” specifies the number of images output from the given stage. Each 
input image is convolved against a separate, learned convolutional kernel for each output image (with the 
results of all these convolutions summed together for each output image). “Size of kernel” specifies the size 
of the square grid of pixels used in the convolutions. “Input image size” specifies the size of the square 
grid of pixels constituting each input image. “Output image size” specifies the size of the square grid of 
pixels constituting each output image. Tables 1 and 2 display the two configurations used for processing 
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Fig. 5. MNIST — smaller architecture.

both CIFAR-10 and MNIST. Tables 3 and 4 display the two configurations used for processing the subset 
of ImageNet described above.

Figs. 1–6 plot the accuracies attained by the different schemes for classification while varying h from (4)
(h is the “learning rate,” as well as the length of the learning step relative to the magnitude of the gradient) 
and varying the dimension m of the space containing the simplex targets; m is the number of rows in A
from (3) and (4). In each figure, the top panel — that labeled “(a)” and “rescaled” — plots the error 
rates for classification using rescaling, with the targets being the vertices on the hypersphere of a regular 
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Fig. 6. ImageNet subset — smaller architecture.

simplex; the middle panel — that labeled “(b)” and “logistic” — plots the error rates for classification using 
multinomial logistic regression; the bottom panel — that labeled “(c)” and “best of both” — plots the error 
rates for the best-performing instance from the top panel (a) together with the best-performing instance 
from the middle panel (b). All error rates refer to performance on the test set. The label “epoch” for the 
horizontal axes refers, as usual, to the number of training sweeps through the data set, as reviewed in the 
coming paragraph.
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As recommended by [7], we learn via (minibatched) stochastic gradient descent, with 100 samples per 
minibatch; rather than updating the parameters being learned for randomly selected individual images from 
the training set exactly as in Section 3, we instead randomly permute the training set and partition this 
permuted set of images into subsets of 100, updating the parameters simultaneously for all 100 images 
constituting each of the subsets (known as “minibatches”), processing the series of minibatches in series. 
Each sweep through the entire training set is known as an “epoch.” The horizontal axes in the figures count 
the number of epochs.

In the experiments of the present section, the accuracies attained using the scale-invariant classification 
stage are comparable to (if not better than) those attained using the usual multinomial logistic regression. 
The scale-invariant classification stage is stable for all values of h, that is, for all learning rates.

6. Conclusion

The combination of 〈1〉 a convolutional network that is equivariant to scalar multiplication, 〈2〉 a classi-
fication stage that is invariant to scalar multiplication, and 〈3〉 the rescaled learning of the last paragraph 
of Section 3 fully realizes and leverages invariance to scalar multiplication. This combination is more robust 
to outliers (including obviously mislabeled data) than the standard multinomial logistic regression “soft-
max” classification, results in marginally better errors on several standard test sets, and fits/learns/trains 
precisely at the user-specified rate, all while costing no more computationally. The attained invariance is 
clean and convenient.
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Appendix A. Calculation of the update in (4)

In these appendices, we leverage matrix Calculus as elaborated by [8]. The chain rule specifies that the 
gradient of c with respect to A is

∂c

∂A
= ∂c

∂z

∂z

∂y

∂y

∂A
(9)

The gradient of c from (5) with respect to z is

∂c

∂z
= 2(z − tj)�. (10)

The Jacobian of z from (2) with respect to y is

∂z

∂y
= I − zz�

‖y‖ , (11)

where I denotes the identity matrix and zz� is the orthogonal projection onto z — due to (2), ‖z‖ = 1. 
The derivative of y from (3) with respect to A is

∂y

∂A
= x⊗ I, (12)

where I is the identity matrix and ⊗ is the tensor product; x ⊗ I is a vector of the same height as x, with 
each entry being the identity matrix I times the corresponding entry of x. Combining (3) and (9)–(12)
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yields

∂c

∂A
= 2x(z�tj z − tj)�

‖Ax‖ , (13)

where z is defined in (2).

Appendix B. Proof of the bound in (6)

In these appendices, we leverage matrix Calculus as elaborated by [8]. To prove (6), we calculate ∂c/∂x
using the chain rule

∂c

∂x
= ∂c

∂z

∂z

∂y

∂y

∂x
. (14)

The gradient of c from (5) with respect to z is

∂c

∂z
= 2(z − tj)�. (15)

The Jacobian of z from (2) with respect to y is

∂z

∂y
= I − zz�

‖y‖ , (16)

where I denotes the identity matrix and zz� is the orthogonal projection onto z — due to (2), ‖z‖ = 1. Of 
course, the Jacobian of y from (3) with respect to x is

∂y

∂x
= A. (17)

The fact that I − zz� is an orthogonal projection yields that

‖I − zz�‖ ≤ 1. (18)

Combining (1)–(3) and (14)–(18) yields (6), as desired.
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