
ID: A software package for low-rank approximation of
matrices via interpolative decompositions, Version 0.4

Per-Gunnar Martinsson, Vladimir Rokhlin,
Yoel Shkolnisky, and Mark Tygert

March 22, 2014

1

The present document and all of the software in the accompanying distribution (which is
contained in the directory id dist and its subdirectories, or in the file id dist.tar.gz) is

Copyright c© 2014 by P.-G. Martinsson, V. Rokhlin, Y. Shkolnisky, and M. Tygert.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions, and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. None of the names of the copyright holders may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWN-
ERS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

2

Contents

1 Introduction 4

2 Compilation instructions 4
2.1 Beware that default command-line flags may not be sufficient for compiling

the source codes! . 5
2.2 Install LAPACK . 5
2.3 Decompress and untar the file id dist.tar.gz 5
2.4 Edit the Makefile . 5
2.5 Make and test the libraries . 6

3 Naming conventions 6

4 Example programs 6

5 Directory structure 6
5.1 Subdirectory bin . 7
5.2 Subdirectory development . 7
5.3 Subdirectory doc . 7
5.4 Subdirectory src . 7
5.5 Subdirectory test . 7

6 Catalog of the routines 8
6.1 List of the routines . 8

7 Documentation in the source codes 16

8 Notation and decompositions 16
8.1 Euclidean norm . 16
8.2 Spectral norm . 16
8.3 Singular value decomposition (SVD) . 17
8.4 Interpolative decomposition (ID) . 17

9 Bug reports, feedback, and support 18

3

IMPORTANT
At the minimum, please read Subsection 2.1 and Section 3 below, and beware that the N.B.’s
in the source code comments highlight key information about the routines; N.B. stands for
nota bene (Latin for “note well”).

1 Introduction

This software distribution provides Fortran routines for computing low-rank approximations
to matrices, in the forms of interpolative decompositions (IDs) and singular value decom-
positions (SVDs). The routines use algorithms based on the ID. The ID is also commonly
known as the approximation obtained via skeletonization, the approximation obtained via
subsampling, and the approximation obtained via subset selection. The ID provides many
advantages in many applications, and we suspect that it will become increasingly popular
once tools for its computation become more widely available. This software distribution
includes some such tools, as well as tools for computing low-rank approximations in the
form of SVDs. Section 8 below defines IDs and SVDs, and provides references to detailed
discussions of the algorithms used in this software package.

Please beware that normalized power iterations are better suited than the software in
this distribution for computing principal component analyses in the typical case when the
square of the signal-to-noise ratio is not orders of magnitude greater than both dimensions
of the data matrix; see [2].

The algorithms used in this distribution have been optimized for accuracy, efficiency,
and reliability; as a somewhat counterintuitive consequence, many must be randomized. All
randomized codes in this software package succeed with overwhelmingly high probability
(see, for example, [2]). The truly paranoid are welcome to use the routines idd diffsnorm

and idz diffsnorm to evaluate rapidly the quality of the approximations produced by the
randomized algorithms (as done, for example, in the files idd a test.f, idd r test.f,
idz a test.f, and idz r test.f in the test subdirectory of the main directory id dist). In
most circumstances, evaluating the quality of an approximation via routines idd diffsnorm

or idz diffsnorm is much faster than forming the approximation to be evaluated. Still,
we are unaware of any instance in which a properly-compiled routine failed to produce an
accurate approximation. To facilitate successful compilation, we encourage the user to read
the instructions in the next section, and to read Section 3, too.

2 Compilation instructions

Followed in numerical order, the subsections of this section provide step-by-step instructions
for compiling the software under a Unix-compatible operating system.

4

2.1 Beware that default command-line flags may not be sufficient
for compiling the source codes!

The Fortran source codes in this distribution pass real*8 variables as integer variables,
integers as real*8’s, real*8’s as complex*16’s, and so on. This is common practice in
numerical codes, and is not an error; be sure to provide the relevant command-line flags
to the compiler (for example, run fort77 and f2c with the flag -!P). When following the
compilation instructions in Subsection 2.4 below, be sure to set FFLAGS appropriately.

2.2 Install LAPACK

The SVD routines in this distribution depend on LAPACK. Before compiling the present
distribution, create the LAPACK and BLAS archive (library) .a files; information about
installing LAPACK is available at http://www.netlib.org/lapack/ (and several other
web sites).

2.3 Decompress and untar the file id dist.tar.gz

At the command line, decompress and untar the file id dist.tar.gz by issuing a command
such as tar -xvvzf id dist.tar.gz. This will create a directory named id dist.

2.4 Edit the Makefile

The directory id dist contains a file named Makefile. In Makefile, set the following:

• FC is the Fortran compiler.

• FFLAGS is the set of command-line flags (specifying optimization settings, for example)
for the Fortran compiler specified by FC; please heed the warning in Subsection 2.1
above!

• BLAS LIB is the file-system path to the BLAS archive (library) .a file.

• LAPACK LIB is the file-system path to the LAPACK archive (library) .a file.

• ARCH is the archiver utility (usually ar).

• ARCHFLAGS is the set of command-line flags for the archiver specified by ARCH needed
to create an archive (usually cr).

• RANLIB is to be set to ranlib when ranlib is available, and is to be set to echo when
ranlib is not available.

5

2.5 Make and test the libraries

At the command line in a shell that adheres to the Bourne shell conventions for redirection,
issue the command “make clean; make” to both create the archive (library) id lib.a and
test it. (In most modern Unix distributions, sh is the Bourne shell, or else is fully compatible
with the Bourne shell; the Korn shell ksh and the Bourne-again shell bash also use the Bourne
shell conventions for redirection.) make places the file id lib.a in the directory id dist;
the archive (library) file id lib.a contains machine code for all user-callable routines in this
distribution.

3 Naming conventions

The names of routines and files in this distribution start with prefixes, followed by an un-
derscore (“ ”). The prefixes are two to four characters in length, and have the following
meanings:

• The first two letters are always “id”, the name of this distribution.

• The third letter (when present) is either “d” or “z”; “d” stands for double precision
(real*8), and “z” stands for double complex (complex*16).

• The fourth letter (when present) is either “r” or “p”; “r” stands for specified rank,
and “p” stands for specified precision. The specified rank routines require the user to
provide the rank of the approximation to be constructed, while the specified precision
routines adjust the rank adaptively to attain the desired precision.

For example, iddr aid is a real*8 routine which computes an approximation of specified
rank. idz snorm is a complex*16 routine. id randperm is yet another routine in this
distribution.

4 Example programs

For examples of how to use the user-callable routines in this distribution, see the source
codes in subdirectory test of the main directory id dist.

5 Directory structure

The main id dist directory contains a Makefile, the auxiliary text files README.txt and
size.txt, and the following subdirectories, described in the subsections below:

1. bin

2. development

3. doc

6

4. src

5. test

6. tmp

If a “make all” command has completed successfully, then the main id dist directory
will also contain an archive (library) file id lib.a containing machine code for all of the
user-callable routines.

5.1 Subdirectory bin

Once all of the libraries have been made via the Makefile in the main id dist directory,
the subdirectory bin will contain object files (machine code), each compiled from the corre-
sponding file of source code in the subdirectory src of id dist.

5.2 Subdirectory development

Each Fortran file in the subdirectory development (except for dfft.f and prini.f) specifies
its dependencies at the top, then provides a main program for testing and debugging, and
finally provides source code for a library of user-callable subroutines. The Fortran file dfft.f
is a copy of P. N. Swarztrauber’s FFTPACK library for computing fast Fourier transforms.
The Fortran file prini.f is a copy of V. Rokhlin’s library of formatted printing routines.
Both dfft.f (version 4) and prini.f are in the public domain. The shell script RUNME.sh

runs shell scripts make src.sh and make test.sh, which fill the subdirectories src and test

of the main directory id dist with source codes for user-callable routines and with the main
program testing codes.

5.3 Subdirectory doc

Subdirectory doc contains this documentation, supplementing comments in the source codes.

5.4 Subdirectory src

The files in the subdirectory src provide source code for software libraries. Each file in the
subdirectory src (except for dfft.f and prini.f) is the bottom part of the corresponding
file in the subdirectory development of id dist. The file dfft.f is just a copy of P. N.
Swarztrauber’s FFTPACK library for computing fast Fourier transforms. The file prini.f

is a copy of V. Rokhlin’s library of formatted printing routines. Both dfft.f (version 4)
and prini.f are in the public domain.

5.5 Subdirectory test

The files in subdirectory test provide source code for testing and debugging. Each file in
subdirectory test is the top part of the corresponding file in subdirectory development of
id dist, and provides a main program and a list of its dependencies. These codes provide
examples of how to call the user-callable routines.

7

6 Catalog of the routines

The main routines for decomposing real*8 matrices are:

1. IDs of arbitrary (generally dense) matrices: iddp id, iddr id, iddp aid, iddr aid

2. IDs of matrices that may be rapidly applied to arbitrary vectors (as may the matrices’
transposes): iddp rid, iddr rid

3. SVDs of arbitrary (generally dense) matrices: iddp svd, iddr svd, iddp asvd,
iddr asvd

4. SVDs of matrices that may be rapidly applied to arbitrary vectors (as may the matrices’
transposes): iddp rsvd, iddr rsvd

Similarly, the main routines for decomposing complex*16 matrices are:

1. IDs of arbitrary (generally dense) matrices: idzp id, idzr id, idzp aid, idzr aid

2. IDs of matrices that may be rapidly applied to arbitrary vectors (as may the matrices’
adjoints): idzp rid, idzr rid

3. SVDs of arbitrary (generally dense) matrices: idzp svd, idzr svd, idzp asvd,
idzr asvd

4. SVDs of matrices that may be rapidly applied to arbitrary vectors (as may the matrices’
adjoints): idzp rsvd, idzr rsvd

This distribution also includes routines for constructing pivoted QR decompositions (in
idd qrpiv.f and idz qrpiv.f), for estimating the spectral norms of matrices that may be
applied rapidly to arbitrary vectors as may their adjoints (in idd snorm.f and idz snorm.f),
for converting IDs to SVDs (in idd id2svd.f and idz id2svd.f), and for computing rapidly
arbitrary subsets of the entries of the discrete Fourier transforms of vectors (in idd sfft.f

and idz sfft.f).

6.1 List of the routines

The following is an alphabetical list of the routines in this distribution, together with brief
descriptions of their functionality and the names of the files containing the routines’ source
code:

Routine Description Source file
id frand generates pseudorandom numbers drawn uni-

formly from the interval [0, 1]; this routine is
more efficient than routine id srand, but cannot
generate fewer than 55 pseudorandom numbers
per call

id rand.f

8

Routine Description Source file
id frandi initializes the seed values for routine id frand to

specified values
id rand.f

id frando initializes the seed values for routine id frand to
their original, default values

id rand.f

id randperm generates a uniformly random permutation id rand.f

id srand generates pseudorandom numbers drawn uni-
formly from the interval [0, 1]; this routine is less
efficient than routine id frand, but can generate
fewer than 55 pseudorandom numbers per call

id rand.f

id srandi initializes the seed values for routine id srand to
specified values

id rand.f

id srando initializes the seed values for routine id srand to
their original, default values

id rand.f

idd copycols collects together selected columns of a matrix idd id.f

idd diffsnorm estimates the spectral norm of the difference be-
tween two matrices specified by routines for ap-
plying the matrices and their transposes to arbi-
trary vectors; this routine uses the power method
with a random starting vector

idd snorm.f

idd enorm calculates the Euclidean norm of a vector idd snorm.f

idd estrank estimates the numerical rank of an arbitrary
(generally dense) matrix to a specified precision;
this routine is randomized, and must be initial-
ized with routine idd frmi

iddp aid.f

idd frm transforms a vector into a vector which is suffi-
ciently scrambled to be subsampled, via a com-
position of Rokhlin’s random transform, random
subselection, and a fast Fourier transform

idd frm.f

idd frmi initializes routine idd frm idd frm.f

idd getcols collects together selected columns of a matrix
specified by a routine for applying the matrix to
arbitrary vectors

idd id.f

idd house calculates the vector and scalar needed to apply
the Householder transformation reflecting a given
vector into its first entry

idd house.f

idd houseapp applies a Householder matrix to a vector idd house.f

idd id2svd converts an approximation to a matrix in the
form of an ID into an approximation in the form
of an SVD

idd id2svd.f

9

Routine Description Source file
idd ldiv finds the greatest integer less than or equal to

a specified integer, that is divisible by another
(larger) specified integer

idd sfft.f

idd pairsamps calculates the indices of the pairs of integers that
the individual integers in a specified set belong
to

idd frm.f

idd permmult multiplies together a bunch of permutations idd qrpiv.f

idd qinqr reconstructs the Q matrix in a QR decomposi-
tion from the output of routines iddp qrpiv or
iddr qrpiv

idd qrpiv.f

idd qrmatmat applies to multiple vectors collected together as a
matrix the Q matrix (or its transpose) in the QR
decomposition of a matrix, as described by the
output of routines iddp qrpiv or iddr qrpiv; to
apply Q (or its transpose) to a single vector with-
out having to provide a work array, use routine
idd qrmatvec instead

idd qrpiv.f

idd qrmatvec applies to a single vector the Q matrix (or its
transpose) in the QR decomposition of a ma-
trix, as described by the output of routines
iddp qrpiv or iddr qrpiv; to apply Q (or its
transpose) to several vectors efficiently, use rou-
tine idd qrmatmat instead

idd qrpiv.f

idd random

transf

applies rapidly a random orthogonal matrix to a
user-supplied vector

id rtrans.f

idd random

transf init

initializes routines idd random transf and
idd random transf inverse

id rtrans.f

idd random

transf inverse

applies rapidly the inverse of the operator applied
by routine idd random transf

id rtrans.f

idd reconid reconstructs a matrix from its ID idd id.f

idd reconint constructs P in the ID A = B P , where the
columns of B are a subset of the columns of
A, and P is the projection coefficient matrix,
given list, krank, and proj output by rou-
tines iddr id, iddp id, iddr aid, iddp aid,
iddr rid, or iddp rid

idd id.f

10

Routine Description Source file
idd sfft rapidly computes a subset of the entries of the

discrete Fourier transform of a vector, composed
with permutation matrices both on input and on
output

idd sfft.f

idd sffti initializes routine idd sfft idd sfft.f

idd sfrm transforms a vector into a scrambled vector of
specified length, via a composition of Rokhlin’s
random transform, random subselection, and a
fast Fourier transform

idd frm.f

idd sfrmi initializes routine idd sfrm idd frm.f

idd snorm estimates the spectral norm of a matrix speci-
fied by routines for applying the matrix and its
transpose to arbitrary vectors; this routine uses
the power method with a random starting vector

idd snorm.f

iddp aid computes the ID of an arbitrary (generally dense)
matrix, to a specified precision; this routine is
randomized, and must be initialized with routine
idd frmi

iddp aid.f

iddp asvd computes the SVD of an arbitrary (generally
dense) matrix, to a specified precision; this rou-
tine is randomized, and must be initialized with
routine idd frmi

iddp asvd.f

iddp id computes the ID of an arbitrary (generally dense)
matrix, to a specified precision; this routine is
often less efficient than routine iddp aid

idd id.f

iddp qrpiv computes the pivotedQR decomposition of an ar-
bitrary (generally dense) matrix via Householder
transformations, stopping at a specified precision
of the decomposition

idd qrpiv.f

iddp rid computes the ID, to a specified precision, of a ma-
trix specified by a routine for applying its trans-
pose to arbitrary vectors; this routine is random-
ized

iddp rid.f

iddp rsvd computes the SVD, to a specified precision, of
a matrix specified by routines for applying the
matrix and its transpose to arbitrary vectors; this
routine is randomized

iddp rsvd.f

11

Routine Description Source file
iddp svd computes the SVD of an arbitrary (generally

dense) matrix, to a specified precision; this rou-
tine is often less efficient than routine iddp asvd

idd svd.f

iddr aid computes the ID of an arbitrary (generally dense)
matrix, to a specified rank; this routine is ran-
domized, and must be initialized by routine
iddr aidi

iddr aid.f

iddr aidi initializes routine iddr aid iddr aid.f

iddr asvd computes the SVD of an arbitrary (generally
dense) matrix, to a specified rank; this routine
is randomized, and must be initialized with rou-
tine idd aidi

iddr asvd.f

iddr id computes the ID of an arbitrary (generally dense)
matrix, to a specified rank; this routine is often
less efficient than routine iddr aid

idd id.f

iddr qrpiv computes the pivotedQR decomposition of an ar-
bitrary (generally dense) matrix via Householder
transformations, stopping at a specified rank of
the decomposition

idd qrpiv.f

iddr rid computes the ID, to a specified rank, of a matrix
specified by a routine for applying its transpose
to arbitrary vectors; this routine is randomized

iddr rid.f

iddr rsvd computes the SVD, to a specified rank, of a ma-
trix specified by routines for applying the matrix
and its transpose to arbitrary vectors; this rou-
tine is randomized

iddr rsvd.f

iddr svd computes the SVD of an arbitrary (generally
dense) matrix, to a specified rank; this routine
is often less efficient than routine iddr asvd

idd svd.f

idz copycols collects together selected columns of a matrix idz id.f

idz diffsnorm estimates the spectral norm of the difference be-
tween two matrices specified by routines for ap-
plying the matrices and their adjoints to arbi-
trary vectors; this routine uses the power method
with a random starting vector

idz snorm.f

idz enorm calculates the Euclidean norm of a vector idz snorm.f

idz estrank estimates the numerical rank of an arbitrary
(generally dense) matrix to a specified precision;
this routine is randomized, and must be initial-
ized with routine idz frmi

idzp aid.f

12

Routine Description Source file
idz frm transforms a vector into a vector which is suffi-

ciently scrambled to be subsampled, via a com-
position of Rokhlin’s random transform, random
subselection, and a fast Fourier transform

idz frm.f

idz frmi initializes routine idz frm idz frm.f

idz getcols collects together selected columns of a matrix
specified by a routine for applying the matrix to
arbitrary vectors

idz id.f

idz house calculates the vector and scalar needed to apply
the Householder transformation reflecting a given
vector into its first entry

idz house.f

idz houseapp applies a Householder matrix to a vector idz house.f

idz id2svd converts an approximation to a matrix in the
form of an ID into an approximation in the form
of an SVD

idz id2svd.f

idz ldiv finds the greatest integer less than or equal to
a specified integer, that is divisible by another
(larger) specified integer

idz sfft.f

idz permmult multiplies together a bunch of permutations idz qrpiv.f

idz qinqr reconstructs the Q matrix in a QR decomposi-
tion from the output of routines idzp qrpiv or
idzr qrpiv

idz qrpiv.f

idz qrmatmat applies to multiple vectors collected together as
a matrix the Q matrix (or its adjoint) in the QR
decomposition of a matrix, as described by the
output of routines idzp qrpiv or idzr qrpiv; to
apply Q (or its adjoint) to a single vector with-
out having to provide a work array, use routine
idz qrmatvec instead

idz qrpiv.f

idz qrmatvec applies to a single vector the Q matrix (or its ad-
joint) in the QR decomposition of a matrix, as
described by the output of routines idzp qrpiv

or idzr qrpiv; to apply Q (or its adjoint) to sev-
eral vectors efficiently, use routine idz qrmatmat

instead

idz qrpiv.f

13

Routine Description Source file
idz random

transf

applies rapidly a random unitary matrix to a
user-supplied vector

id rtrans.f

idz random

transf init

initializes routines idz random transf and
idz random transf inverse

id rtrans.f

idz random

transf inverse

applies rapidly the inverse of the operator applied
by routine idz random transf

id rtrans.f

idz reconid reconstructs a matrix from its ID idz id.f

idz reconint constructs P in the ID A = B P , where the
columns of B are a subset of the columns of
A, and P is the projection coefficient matrix,
given list, krank, and proj output by rou-
tines idzr id, idzp id, idzr aid, idzp aid,
idzr rid, or idzp rid

idz id.f

idz sfft rapidly computes a subset of the entries of the
discrete Fourier transform of a vector, composed
with permutation matrices both on input and on
output

idz sfft.f

idz sffti initializes routine idz sfft idz sfft.f

idz sfrm transforms a vector into a scrambled vector of
specified length, via a composition of Rokhlin’s
random transform, random subselection, and a
fast Fourier transform

idz frm.f

idz sfrmi initializes routine idz sfrm idz frm.f

idz snorm estimates the spectral norm of a matrix specified
by routines for applying the matrix and its ad-
joint to arbitrary vectors; this routine uses the
power method with a random starting vector

idz snorm.f

idzp aid computes the ID of an arbitrary (generally dense)
matrix, to a specified precision; this routine is
randomized, and must be initialized with routine
idz frmi

idzp aid.f

idzp asvd computes the SVD of an arbitrary (generally
dense) matrix, to a specified precision; this rou-
tine is randomized, and must be initialized with
routine idz frmi

idzp asvd.f

idzp id computes the ID of an arbitrary (generally dense)
matrix, to a specified precision; this routine is
often less efficient than routine idzp aid

idz id.f

14

Routine Description Source file
idzp qrpiv computes the pivotedQR decomposition of an ar-

bitrary (generally dense) matrix via Householder
transformations, stopping at a specified precision
of the decomposition

idz qrpiv.f

idzp rid computes the ID, to a specified precision, of a ma-
trix specified by a routine for applying its adjoint
to arbitrary vectors; this routine is randomized

idzp rid.f

idzp rsvd computes the SVD, to a specified precision, of
a matrix specified by routines for applying the
matrix and its adjoint to arbitrary vectors; this
routine is randomized

idzp rsvd.f

idzp svd computes the SVD of an arbitrary (generally
dense) matrix, to a specified precision; this rou-
tine is often less efficient than routine idzp asvd

idz svd.f

idzr aid computes the ID of an arbitrary (generally dense)
matrix, to a specified rank; this routine is ran-
domized, and must be initialized by routine
idzr aidi

idzr aid.f

idzr aidi initializes routine idzr aid idzr aid.f

idzr asvd computes the SVD of an arbitrary (generally
dense) matrix, to a specified rank; this routine
is randomized, and must be initialized with rou-
tine idz aidi

idzr asvd.f

idzr id computes the ID of an arbitrary (generally dense)
matrix, to a specified rank; this routine is often
less efficient than routine idzr aid

idz id.f

idzr qrpiv computes the pivotedQR decomposition of an ar-
bitrary (generally dense) matrix via Householder
transformations, stopping at a specified rank of
the decomposition

idz qrpiv.f

idzr rid computes the ID, to a specified rank, of a matrix
specified by a routine for applying its adjoint to
arbitrary vectors; this routine is randomized

idzr rid.f

idzr rsvd computes the SVD, to a specified rank, of a ma-
trix specified by routines for applying the matrix
and its adjoint to arbitrary vectors; this routine
is randomized

idzr rsvd.f

15

Routine Description Source file
idzr svd computes the SVD of an arbitrary (generally

dense) matrix, to a specified rank; this routine
is often less efficient than routine idzr asvd

idz svd.f

7 Documentation in the source codes

Each routine in the source codes includes documentation in the comments immediately
following the declaration of the subroutine’s calling sequence. This documentation describes
the purpose of the routine, the input and output variables, and the required work arrays (if
any). This documentation also cites relevant references. Please pay attention to the N.B.’s;
N.B. stands for nota bene (Latin for “note well”) and highlights important information about
the routines.

8 Notation and decompositions

This section sets notational conventions employed in this documentation and the associated
software, and defines both the singular value decomposition (SVD) and the interpolative
decomposition (ID). For information concerning other mathematical objects used in the
code (such as Householder transformations, pivoted QR decompositions, and discrete and
fast Fourier transforms — DFTs and FFTs), see, for example, [1]. For detailed descriptions
and proofs of the mathematical facts discussed in the present section, see, for example, [1]
and the references in [2].

Throughout this document and the accompanying software distribution, ‖x‖ always de-
notes the Euclidean norm of the vector x, and ‖A‖ always denotes the spectral norm of the
matrix A. Subsection 8.1 below defines the Euclidean norm; Subsection 8.2 below defines
the spectral norm. We use A∗ to denote the adjoint of the matrix A.

8.1 Euclidean norm

For any positive integer n, and vector x of length n, the Euclidean (l2) norm ‖x‖ is

‖x‖ =

√√√√ n∑
k=1

|xk|2, (1)

where x1, x2, . . . , xn−1, xn are the entries of x.

8.2 Spectral norm

For any positive integers m and n, and m×n matrix A, the spectral (l2 operator) norm ‖A‖
is

‖Am×n‖ = max
‖Am×n xn×1‖
‖xn×1‖

, (2)

where the max is taken over all n× 1 column vectors x such that ‖x‖ 6= 0.

16

8.3 Singular value decomposition (SVD)

For any positive real number ε, positive integers k, m, and n with k ≤ m and k ≤ n, and
any m × n matrix A, a rank-k approximation to A in the form of an SVD (to precision ε)
consists of an m × k matrix U whose columns are orthonormal, an n × k matrix V whose
columns are orthonormal, and a diagonal k×k matrix Σ with diagonal entries Σ1,1 ≥ Σ2,2 ≥
· · · ≥ Σn−1,n−1 ≥ Σn,n ≥ 0, such that

‖Am×n − Um×k Σk×k (V ∗)k×n‖ ≤ ε. (3)

The product U ΣV ∗ is known as an SVD. The columns of U are known as left singular
vectors; the columns of V are known as right singular vectors. The diagonal entries of Σ are
known as singular values.

When k = m or k = n, and A = U ΣV ∗, then U ΣV ∗ is known as the SVD of A; the
columns of U are the left singular vectors of A, the columns of V are the right singular
vectors of A, and the diagonal entries of Σ are the singular values of A. For any positive
integer k with k < m and k < n, there exists a rank-k approximation to A in the form of an
SVD, to precision σk+1, where σk+1 is the (k + 1)st greatest singular value of A.

8.4 Interpolative decomposition (ID)

For any positive real number ε, positive integers k, m, and n with k ≤ m and k ≤ n, and
any m × n matrix A, a rank-k approximation to A in the form of an ID (to precision ε)
consists of a k × n matrix P , and an m× k matrix B whose columns constitute a subset of
the columns of A, such that

1. ‖Am×n −Bm×k Pk×n‖ ≤ ε,

2. some subset of the columns of P makes up the k × k identity matrix, and

3. every entry of P has an absolute value less than or equal to a reasonably small positive
real number, say 2.

The product B P is known as an ID. The matrix P is known as the projection or interpolation
matrix of the ID. Property 1 above approximates each column of A via a linear combination
of the columns of B (which are themselves columns of A), with the coefficients in the linear
combination given by the entries of P .

The interpolative decomposition is “interpolative” due to Property 2 above. The ID is
numerically stable due to Property 3 above. It follows from Property 2 that the least (kth

greatest) singular value of P is at least 1. Combining Properties 2 and 3 yields that

‖Pk×n‖ ≤
√

4k(n− k) + 1. (4)

When k = m or k = n, and A = B P , then B P is known as the ID of A. For any positive
integer k with k < m and k < n, there exists a rank-k approximation to A in the form of an
ID, to precision

√
k(n− k) + 1 σk+1, where σk+1 is the (k+ 1)st greatest singular value of A

(in fact, there exists an ID in which every entry of the projection matrix P has an absolute
value less than or equal to 1).

17

9 Bug reports, feedback, and support

Please let us know about errors in the software or in the documentation via e-mail to
tygert@aya.yale.edu. We would also appreciate hearing about particular applications
of the codes, especially in the form of journal articles e-mailed to tygert@aya.yale.edu.
Mathematical and technical support may also be available via e-mail. Enjoy!

References

[1] G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, Maryland, third ed., 1996.

[2] N. Halko, P. Martinsson, and J. A. Tropp, Finding structure with randomness:
probabilistic algorithms for constructing approximate matrix decompositions, SIAM Re-
view, 53 (2011), pp. 217–288.

18

